1- W. Deqing, Effects of additives on
combustion synthesis of Al2O3–TiB2 ceramic
composite, Journal of the European Ceramic
Society 29, 1485–1492, 2009.
2- C.L. Yeh, and R.F. Li, Formation of TiB2–
Al2O3 and NbB2–Al2O3 composites by
combustion synthesis involving thermite
reactions, Chemical Engineering Journal 147,
405–411, 2009 .
3- T.S.R.Ch. Murthy, C. Subramanian, R.K.
Fotedar, M.R. Gonal, P. Sengupta, S. Kumar,
and A.K. Suri, Preparation and property
evaluation of TiB2 + TiSi2 composite, Int.
Journal of Refractory Metals & Hard Materials
27, 629–636, 2009.
4- M. Adeli, S.H. Seyedein, M.R. Aboutalebi,
M. Kobashi, and N. Kanetake, A study on the
combustion synthesis of titanium aluminide in
the self-propagating mode, Journal of Alloys
and Compounds 497, 100–104, 2010.
5- J.H. Lee, C.Y. An, C.W. Won, S.S. Cho,
and B.S. Chun, Characteristics of Al2O3–SiC
composite powder prepared by the selfpropagating
high-temperature synthesis
process and its sintering behavior, Materials
Research Bulletin 35, 945–954, 2000.
6- S. Hasani, M. Panjepour, and M.
Shamanian, Effect of atmosphere and heating
rate on mechanism of MoSi2n formation
during self-propagating high-temperature
synthesis, J Therm Anal Calorim, 107:1073–
1081, 2012.
7- C.L. Chu, C.Y. Chung, P.H. Lin, and S.D.
Wang, Fabrication of porous NiTi shape
memory alloy for hard tissue implants by
combustion synthesis, Materials Science and
Engineering A366, 114–119, 2004.
8- C.L. Yeh, and Y.G. Shen, Formation of
TiAl–Ti2AlC in situ composites by
combustion synthesis, Intermetallics 17, 169–
173, 2009.
9- Y. Kopit, The ability of systems based on
Ni, Al and Ti to be synthesized by selfpropagating
high-temperature synthesis (SHS),
Intermetallics 9, 387–393, 2001.
10 –ز .عباسی، م .ح .شریعت و س. جوادپور، تأثیر
فراسنجهای اجرایی بر سنتز احتراقی کامپوزیتهای نیترید
آلومینیوم -کاربید سیلیسیم با کاربرد منبع جامد نیتروژن به
کمک میکروویو، مجله مواد نوین/ جلد1 پ شماره 4
تابستان1390.
11- T. Singanahally A. Aruna, and S.
Mukasyan, Combustion synthesis and
nanomaterials, Current Opinion in Solid State
and Materials Science 12, 44–50, 2008.
12- G.B. Raju, and B. Basu, Development of
High Temperature TiB2-based Ceramics, Key
Engineering Materials Vol. 395, pp 89-124,
2009.
13- Li. Junshou, Z. Cai, H. Guo, B. Xu, and L.
Li, Characteristics of porous Al2O3–TiB2
ceramics fabricated by the combustion
synthesis, Journal of Alloys and Compounds
479, 803–806, 2009.
14- R. Taherzadeh Mousavian, S. Sharafi, and
M.H. Shariat, Microwave-assisted combustion
synthesis in a mechanically activated Al–
TiO2–H3BO3 system, Int. Journal of
Refractory Metals and Hard Materials 29, 281–
288, 2011.
15- R. Taherzadeh Mousavian, S. Sharafi, M.
R. Roshan, and M. H. Shariat, Effect of
mechanical activation of reagents’ mixture on
the high-temperature synthesis of Al2O3–TiB2
composite powder, J Therm Anal Calorim DOI
10.1007/s10973-010-1272-0.
16- M.A. Meyers, E.A. Olevsky, J. Ma, and M.
Jamet, Combustion synthesis/densification of
an Al2O3–TiB2 composite, Materials Science
and Engineering A311, 83–99, 2001.