1- D. Dornfeld, D. Lee, “PrecisionManufacturing”, Springer Pub., 2008.
2- K. Maekawa, A. Itoh, “Friction and toolwear in nano-scale machining-a molecular
dynamics approach”, Wear 188, p.115-122,1995.
3- R. Komanduri, N. Chandrasekaran, L.M.Raff, “Effect of tool geometry in nanometric
cutting: an MD simulation approach”, Wear219, p.84-97, 1998.
4- R. Komanduri, N. Chandrasekaran, L.M.Raff, “Some aspects of machining with
negative rake tools simulating grinding: anMD simulation approach”, Phil. Mag. B 79,
p.955-968, 1999.
5- R. Komanduri, N. Chandrasekaran, L.M.Raff, “Orientation Effects in Nanometric
Cutting of Single Crystal Materials: An MDSimulation Approach”, CIRP AnnalsManufacturing
Technology 48, p. 67-72, 1999.
6- R. Komanduri, N. Chandrasekaran, L.M.Raff, “MD simulation of exit failure in
nanometric cutting”, Materials Science andEngineering A 311, p.1-12, 2001.
7- T.H. Fang, Ch. I. Weng, “Threedimensionalmolecular dynamics analysis ofprocessing using a pin tool on the atomic
scale”, Nanotechnology 11, p.148–53, 2000.
8- Y. Takeuchi, M. Sakamoto, T. Sata,“Improvement in the working accuracy of an
NC lathe by compensating for thermalexpansion”, Precision Eng. 4 1, p.19–24, 1982.
9- N.A. Abukhshim, P.T. Mativenga, M.A.Sheikh, “Heat generation and temperature
prediction in metal cutting: A review andimplications for high speed machining”,
International Journal of Machine Tools &Manufacture 46, p.782–800, 2006.
10- G. Barrow, “A review of experimental andtheoretical techniques for assessing cutting
temperatures”, CIRP Annals-ManufacturingTechnology 22 2, p.203–211, 1973.
11- A.O. Schmidt, O.W. Gilbert, A. Boston,“Thermal balance method and mechanical
investigation for evaluating machinability”,Trans. ASME 67, p.84-97, 1945.
12- Y.Y. Ye, R. Biswas, et al., “Moleculardynamics simulation of nanoscale machining
of copper”, Nanotechnology 14, p.390–396,2003.
13- R. Rentsch, I. Inasaki, “Effects of fluids onthe surface generation in material removal
processes - molecular dynamics simulation”,CIRP Annals-Manufacturing Technology 55,
p.601-604, 2006.
14- R. Rentsch, I. Inasaki, “Moleculardynamics simulation of the nanometer scale
cutting process”, Int. J. ManufacturingResearch 1 1, p.83 – 100, 2006.
15- H. Chen, I. Hagiwara, “Parallel moleculardynamics simulation of nanometric grinding”,
Transactions of the Japan Society forComputational Engineering and Science 7, p.207-213, 2005.
16- J. Shimizu, L.B. Zhou, H. Eda,“Simulation and experimental analysis of super
high-speed grinding of ductile material”, J. ofMaterials Processing Technology 129, p.19-24,
2002.
17- D.C. Rapaport, “The Art of MolecularDynamics Simulation”, Cambridge University
Press, 1995.
18- D. R. Lide, “Handbook of Chemistry andPhysics”, CRC Press, 2002.
19- S.M. Foiles, M.S. Daw, M.I. Baskes,“Embedded-atom-method functions for the fcc
metals Cu, Ag, Au, Ni, Pd, Pt, and theiralloys”, Physical Review B 33 12, p.7983-7991, 1986.
20- R. Komanduri, L.M. Raff, “A review onthe molecular dynamics simulation of
machining at the atomic scale”, Proceedings ofthe Institution of Mechanical Engineers Part B:
Journal of Engineering Manufacture 215,p.1639-1672, 2001.
21- I.F. Stowers et al., “Molecular dynamicssimulation of the chip forming process insingle crystal copper and comparison withexperimental data”, Proc. ASPE Annu. Meet.,p.13-18, 1991.