ارزیابی ریزساختار نانوکامپوزیت کوپلیمر (اکریلونیتریل- بوتادین)تقویت شده به وسیله نانوکربنات کلسیم با استفاده از آزمون نفوذپذیری

نوع مقاله : مقاله پژوهشی

نویسنده

دانشجوی دکتری، دانشگاه آزاد اسلامی، باشگاه پژوهشگران جوان و نخبگان، واحد امیدیه.

چکیده

تلاش برای دستیابی به کاهش شایان توجه نفوذپذیری مواد پلیمری در برابر مایعات و گازها برای تولید فرآورده های پلیمری خنثی در کاربردهای مهندسی از جایگاهی ویژه­ در پژوهش ها برخوردار است. هدف از این پژوهش، بررسی رفتار نفوذپذیری کوپلیمر (اکریلونیتریل- بوتادین) تقویت شده به وسیله نانوذرات کربنات کلسیم در محدوده دمایی °C45-25 و هم­چنین، استفاده از آزمون­ نفوذپذیری حلال جهت ارزیابی ریزساختار نانوکامپوزیت­های پلیمری است. نتایج نشان می­دهند که غلظت نانوذره در نانوکامپوزیت نقشی تعیین کننده در مقادیر ضرایب نفوذ، جذب و تراوایی نانوکامپوزیت دارد و با افزایش نانوکربنات کلسیم تا مقدار بهینه (15-10 درصد)، روند کاهشی در ضرایب دیده می­شود (کاهش 22 درصدی ضریب نفوذ) و در غلظت­های بالاتر، روند صعودی بویژه در دماهای بالاتر مشاهده شد. با افزایش درجه حرارت، مکانیسم نفوذ در   نانوکامپوزیت­های تولیدی به حالت نفوذ فیکی نزدیکتر گردید.افزایش غلظت نانوذره مقدار تورم و سرعت نفوذ حلال و        هم­چنین، انرژی فعالسازی (تا حدود دو برابر) کاهش نشان می دهند.با استفاده از تصاویر میکروسکوپ الکترونی ریزساختار و پراکندگی نانوذرات کربنات کلسیم در بستر پلیمری ارزیابی و ارتباطی مناسب میان ریزساختار و نتایج تجربی بدست آمده (آزمون­ نفوذپذیری و مکانیکی) برقرار گردید. روی هم رفته، آزمون­های نفوذپذیری، مکانیکی و تصاویر میکروسکوپ الکترونی ریزساختار رفتاری مشابه برای نانوکامپوزیت­های تولیدی ارایه نمودند و می­توان پیشنهاد کرد که از آزمون­ نفوذپذیری به عنوان شیوه­ای ارزان­قیمت و ساده برای شناسایی و ارزیابی خواص نانوکامپوزیت­های پلیمری استفاده شود.

کلیدواژه‌ها


عنوان مقاله [English]

Microstructure Evaluation of Acrylonitril-Butadiene Copolymer Nanocomposites Reinforced by Nano-Calcium Carbonate by Permeability Test

نویسنده [English]

  • Z Shakouri
چکیده [English]

Attempt to significant decreasing of permeability of polymeric material in versus liquid and gases for production of inert polymeric products in engineering applications have special situation in research. The purpose of this research is to study the permeability behavior of Acrylonitril-Butadiene copolymerre inforced by calcium carbonate nanoparticles in the temperature range 25–45°Cand using the solvent permeability tests to microstructure evaluation of the polymer nanocomposites. Results show the concentration of nano particle plays an important role in the diffusion, sorption and permeation coefficients and by increasing the amount ofnano-CaCO3up to optimum content (10-15%) decrease in the secoefficients (22% decrease in diffusion coefficient)is observed, whereas for higher concentrations, especially at higher temperature increasing trend were obtained for the secoefficients. By increase temperature, diffusion mechanism is more close to Ficki an mechanism. Increase of nano particle concentration in nanocomposite decrease ultimate swelling and diffusion rate of solvent and also activation energy (up to two fold).The micro structure and the dispersion of nano-CaCO3in the polymer matrix was evaluated using SEM micrographs and an appropriate relationship was established between the micro structure and the experimental results(permeability and mechanical properties).In general, swelling test and mechanical analysis an delectron micro scope images were presented similar behavior for prepared nanocomposites and can be recommended that swelling and permeability test scan be used as an inexpensive and simple method to characterization and evaluation of the properties of polymer nanocomposites.

کلیدواژه‌ها [English]

  • Nanocomposite
  • Nano-Calcium Carbonate
  • Microstructure
  • Permeability
  • mechanical properties
1-                   T. M. Aminabhavi and R. S. Khinnavar, Diffusion and Sorption of Organic Liquids Through Polymer Membranes: Polyurethane, Nitrile-Butadiene Rubber and Epichlorohydrin Versus Aliphatic Alchoholes, Polymer, 34, 1006-1018, 1993.
2-                   N. S. Schneider, J. L. Illinger and M. A. Cleaves, Liquid Sorption in a Segmented Polyurethane Elastomer.Polym. Eng. Sci., 26, 1547-1554, 1986.
3-                   M. E. Myers and I. A. Abu–Isa, Elastomer Solvent Interactions III-Effects of Methanol Mixtures on fluorocarbon Elastomers.,J. Appl. Polym.Sci., 32, 3515-3522, 1986.
4-                   J. M. Bouvier and M. Gelus, Diffusion of Heavy Oil in a Swelling Elastomer, Rubber Chem. Technol., 59, 233-240, 1986.
5-                   T. Johnson and S. Thomas, Effect of Epoxidation on the Transport Behaviour and Mechanical Properties of Natural Rubber, Polymer, 41, 7511-7522, 2000. 
6-                   S. N. Lawandy and M. T. Wassef, Penetration of Oils into Polychloroprene Rubber,J. Appl. Polym.Sci., 40, 323-329, 1990.
7-                   G. Unnikrishnan and S. Thomas, Sorption and Diffusion of Aliphatic Hydrocarbons into Crosslinked Natural Rubber, J. Polym. Sci. B: Polym. Phys., 35, 725–734, 1997.
8-                   G. Unnikrishnan and S. Thomas, Diffusion and Transport of Aromatic Hydrocarbons Through Natural Rubber, Polymer, 35, 5504, 1994.
9-                   N. J. Morrison and M. Porter, Temperature Effects on the Stability of the Intermediates
and Crosslinks in Sulfur Vulcanization,Rubber Chem. Technol.,57, 63-68, 1994.
10-               P. P. Kundu, R. N. P. Choudhury and D. K. Tripathy, Influence of Blend Composition on the Physical, Flame Retardancy, Dielectric, Aging, and Solvent Resistance Properties of poly[Ethylene(Vinyl acetate)] and Polychloroprene,J. Appl. Polym. Sci., 71, 551-558, 1999.
11-               A. Sujith and G. Unnikrishnan, Molecular Sorption by Heterogeneous Natural Rubber/Poly(Ethylene-Co-Vinyl Aacetate) Blend Systems, J. Polym. Research, 13, 171–180, 2006.
12-               A. Sujith, and G. Unnikrishnan, Barrier properties of Natural Rubber/Eethylene Vinyl Acetate/Carbon Black Composites, Journal of Material Science, 4625-4640, 2005.
13-               A. Sujith, G. Unnikrishnan, C.K. Radhakrishnan, and M. Padmini, Interaction of Silica and Carbon Black Fillers with Natural Rubber/Poly(Ethylene-Co-Vinyl Acetate) Matrix by Swelling Studies, Polym. Compos., 28, 705-712, 2007.
14-               H. Ismail, S. Ishak, and Z.A.A. Hamid, Effect of Silane Coupling Agent on the Curing, Tensile, Thermal, and Swelling Properties of EPDM/Mica Composites, , Journal of Vinyl and Additive Technology, 20, 116–121, 2014.
15-               H. Ismail, R. B. A. Majid, and R. M. Taib, Effects of Dynamic Vulcanization on Tensile, Morphological, and Swelling Properties of PVC/ENR/Kenaf Core Powder Composites, Journal of Vinyl and Additive Technology, 21, 1-9, 2015.
16-               Hwang W.G., Wei K.H., and Wu C.M., Synergistic Effect of Compatibilizer in Organo-Modified Layered Silicate Reinforced Butadiene Rubber Nanocomposites, , Polymer Engineering Science, 46, 80–88, 2006.
17-               A. Mousa, and J.K. Kocsis, Rheological and Thermodynamical Behavior of styrene/Butadiene Rubber-Organoclay Nanocomposites, Journal of Macromolecules Material Engineering, 286, 260-269, 2001.
18-               W. G. Hwang and K. H. Wei, Mechanical, Thermal, and Barrier Properties of NBR/Organosilicate Nanocomposites, Polym. Eng. Sci., 44, 2117–2124, 2004.
19-               M. Bhattacharya, S. Biswas, S. Bandyopadhyay, and A. K. Bhowmick, Influence of the Nanofiller Type and Content on Permeation Characteristics of Multifunctional NR Nanocomposites and their Modeling. . Polymer for Advance Technology, 23, 596–610, 2012.
20-               A. Jacob, P. Kurian, and A. S. Aprem, Transport Properties of Natural Rubber Latex Layered Clay Nanocomposites, J Appl Polym Sci, 108, 2623–2629, 2008.
21-             بازوبندی،ن. زبرجد، س.م. سجادی، س.ع. مطالعه مقاومت خراشی پلی­اتیلن و کامپوزیت تقویت شده آن با نانوذرات کربنات کلسیم، مجله مواد نوین، جلد 4، شماره 2، صفحه 79، 1392
22-               E. E. Akporhonor, P. A. Egwaikhide and F. E. Okieimen, Equilibrium Sorption Properties of Palm Kernel Husk and N330 Filled Natural Rubber Vulcanizates as a Function of Filler Volume Fraction, Sci. Res. Essay, 2, 5, 159-162, 2007.
23-               M. M. Aliabadi, Gh. Naderi, S. J. Shahtaheri, A. R. Forushani, I. Mohammadfam and M. Jahangiri, Transport Properties of Carboxylated Nitrile Butadiene Rubber (XNBR)-Nanoclay Composites; a Promising Material for Protective Gloves in Occupational Exposures, Journal of Environmental Health Science & Engineering,12, 51, 2014.
24-               J. Promchim, S. Kanking, P. Niltui, E. Wimolmala, and N. Sombatsompop, Swelling and Mechanical Properties of (Acrylonitrile-Butadiene Rubber)/(Hydrogenated Acrylonitrile-Butadiene Rubber) Blends With Precipitated Silica Filled in Gasohol Fuels, , Journal of Vinyl and Additive Technology, DOI: 10.1002/vnl.21417, 2014.
25-               S. Choudalakis and A. D. Gotsis, Permeability of Polymer/Clay Nanocomposites: A Review, Eur. Polym. J., 45, 967-984, 2009.
26-               A. S. Aprem, K. Joseph and S. Thomas, Recent Developments in Crosslinking of Elastomers, Rubber Chem. Technol.,78, 458–488, 2005.
27-               P. K. Chattopadhyay, and S. Chattopadhyay, Prediction of Extent of Swelling in Ternery Particulate Rubber Nanocomposites: Development of Modified Kraus Equation, Rubber Chem. Technol., 84, 1-23, 2011.
28-               M. Bhattacharya, and A. K. Bhowmick, Polymer–filler interaction in nanocomposites: New Interface Area Function to Investigate Swelling Behavior and Young’s Modulus, Polymer, 49, 4808–4818, 2008.
29-               A.J. Marzocca, A.L. Rodrıguez Garraza, and M.A. Mansilla, Evaluation of the Polymer–Solvent Interaction Parameter c for the System Cured Polybutadiene Rubber and Toluene, Polymer Testing, 29, 119–126, 2010.
30-               T. Pojanavaraphan, D. A. Schiraldi, and R. Magaraphan, Mechanical, rheological, and Swelling Behavior of Natural Rubber/Montmorillonite Aerogels Prepared by Freeze-Drying, App. Clay Sci., 50, no. 2, 271-279, 2010.
31-               Kh. Ahmed, An investigation on Chloroprene-Compatibilized Acrylonitrile Butadiene Rubber/High Density Polyethylene Blends, Journal of Advanced Research (2014), In-Press.
32-                E. V. Takeshita, F. A. Piantola, S. M. de Souza, R. C. R. Nunes,
A. A. U. de Souza, Regina C. R. Nunes, Antonio A. U. de Souza, Quantification of SBR Swelling as a Function of the Toluene Content in Gasoline: A New Method to Detect Adulterations of Fuels, J. Appl. Polym. Sci. 127: 3053–3062, 2013
33-               P. J. Flory, in Principles of Polymer Chemistry, Cornell University, Ithaca, New York, 1953.
34-               L. H. Sperling, Introduction to Physical Polymer Science, 4th ed. Wiley: New York, 473, 2006.
35-               Q. Li, N. H. Kim, G. H. Yoo, and J. H. Lee, Positive Temperature Coefficient Characteristic and Structure of Graphite Nanofibers Reinforced High Density Polyethylene/Carbon Black Nanocomposites, Composites: Part B, 40, 218–224, 2009.
36-               S. C. George and S. Thomas, Transport Phenomena Through Polymeric Systems Prog. Polym. Sci., 26, 985, 2001.
37-               I. O. Igwe, and O.E. Ezeani, Studies on the Transport of Aromatic Solvents Through Filled Natural Rubber, International Journal of Polymer Science, Article ID: 212507, 1-11, 2012.
38-               A. S. Aprem, K.Joseph, A. P. Mathew and S. Thomas, Sorption and Diffusion of Acrylonitrile Monomer Through Crosslinked Nitrile Rubber, Journal of Applied polymer Science, 78, 941-952, 2000.
39-               W. G. Hwang, K. H. Wei, and C. M. Wu, Synergistic Effect of Compatibilizer in Organo-Modified Layered Silicate Reinforced Butadiene Rubber Nanocomposites, Polym. Eng. Sci., 46, 80–88, 2006.
40-               A. Mousa, and J. K. Kocsis, Rheological and Thermodynamical Behavior of styrene/Butadiene Rubber-Organoclay Nanocomposites, J. Macromol. Mater. Eng., 286, 260-269, 2001.
41-               K. Siddaramaiah, S. Roopa and U. Premakumar, Sorption and Diffusion of Aromatic Penetrants into Natural Rubber Blends, Polymer, 39, 17. 3925-3931, 1998.
42-               D. Malomo, A. K. Akinlabi, F. E. Okieimen, and F. Egharevba, Influence of Mixing Scheme on Aging, Swelling and Permeability Properties of Vulcanizates from Blends of Natural Rubber and Low Molecular Weight Natural Rubber in Petroleum Fuels and Organic Solvents, Chemical Industry & Chemical Engineering Quarterly, 16, 1, 19−30, 2010.
43-               T.V. Mathew,and S. Kuriakose, Molecular Transport of Aromatic Hydrocarbons Through Lignin-Filled Natural Rubber Composites, , Polymer Composites, 28, 15–22, 2007.
44-               A. E. Mathai, R. P. Singh, and S. Thomas, Transport of Ssubstituted Benzenes Through Nitrile Rubber/Natural Rubber Blendmembranes, Journal of Membrane Science, 202, 35–54, 2002.
45-               I. O. Igwe, C. M. Ewulonu, and I. Igboanugo, Studies on the Diffusion Characteristics of Some Aromatic Solvents into Polypropylenefilm, Journal of Applied Polymer Science, 102,2, 1985–1989, 2006.
46-               I.O. Igwe, Uptake of Aromatic Solvents by Polyethylene Films,Journal of Applied Polymer Science, 104,  6, 3849–3854, 2007.
47-               A. Jacob, P. Kurian, and A. S. Aprem, Transport Properties of Natural Rubber Latex Layered Clay Nanocomposites, J Appl Polym Sci, 108, 2623–2629, 2008.
48-               H. Sadeghi Ghari and Z. Shakouri, The Effect of Chain Orientation on Solvent Transport Properties of Natural Rubber-Nanoclay Nanocomposites J. Appl. Researches in Chem., 7, 3, 13-27, 2013.