ساخت، مشخصه یابی و مطالعه ویژگی های ساختار بلوری، الکتریکی و مغناطیسی ترکیب ابررسانایی Y2Ba5Cu7Ox

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار فیزیک، دانشکده علوم پایه، دانشگاه صنعتی همدان، همدان، ایران

2 استادیار مهندسی پزشکی، دانشکده مهندسی پزشکی، دانشگاه صنعتی همدان، همدان، ایران

چکیده

ترکیب جدید ابررسانای دمای بالا با فرمول Y2Ba5Cu7Ox (Y257) از خانواده YBCO با استفاده از روش حالت جامد استاندارد ساخته شد. پودر مواد اولیه در حضور هوا کلسینه شد و در مرحله بعد قرص­های نمونه در حضور گاز اکسیژن تف­جوشی شدند. سلول واحد این ترکیب شامل چینش متوالی سلول واحد ترکیب­های Y123، Y124 و یک لایه اضافی BaO است که در راستای محور c بر روی هم قرار گرفته­اند. ویژگی‌های ساختار بلوری و گروه فضایی این ترکیب با استفاده از آنالیز پراش پرتو X و روش پالایش ریتولد مطالعه شده است. مقاومت ویژه الکتریکی ترکیب Y257 در دمای گذار ابررسانایی آغازی برابر 98 K به شدت کاهش یافت و در دمای گذار ابررسانایی نهایی برابر 92 K به مقدار صفر ‌رسید. مقاومت ویژه الکتریکی این ترکیب در بازه دمای اتاق تا دمای گذار ابررسانایی آغازی، رفتار فلز گونه دارد. در آزمایش اندازه­گیری مقاومت الکتریکی نمونه بر حسب دما با اعمال میدان مغناطیسی، مقاومت ویژه الکتریکی با شیب کمتری به مقدار صفر نزدیک شد و دچار پهن شدگی شد. اعمال میدان مغناطیسی، باعث افزایش گستره گذار ابررسانایی و کاهش دمای گذار ابررسانایی نمونه­ها شد. رفتار مقاومت ویژه الکتریکی در حضور میدان مغناطیسی خارجی از مدل خزش شار فعال شده گرمایی تبعیت می­کند.

کلیدواژه‌ها


عنوان مقاله [English]

Synthesizing, characterizing and investigating the crystal structural, electric and magnetic properties of superconducting compound Y2Ba5Cu7Ox

نویسندگان [English]

  • Mojtaba Mazaheri 1
  • Shahriar Jamasb 2
1 Assistant professor of physics, Department of basic science, Hamedan university of technology, Hamedan, Iran
2 Assistant Professor of Biomedical Engineering , Department of Biomedical Engineering, Hamedan University of Technology, Hamedan, Iran
چکیده [English]

A new superconductor, Y2Ba5Cu7Ox , (Y257), a member of YBCO family, was synthesized using the standard solid-state reaction method. The powder was calcinated in the air flow and then in the next step the sample was sintered in the presence of oxygen flow. The unit cell of the compound includes the subsequent block of Y123, Y124 and an excess BaO layer which are set in the c direction. The structural properties and space group of the compound were studied using the X-ray diffraction experiment which is analyzed by Rietveld method. The electric resistivity of the sample showed a transition to a superconducting state at onset superconducting transition temperature 98 K and reached to zero resistivity at offset superconducting transition temperature 92 K. In normal state, from the room temperature down to the onset superconducting transition temperature, the electric resistivity shows a metallic behavior. In the measurement of resistivity versus temperature in the presence of magnetic field, the resistivity decreases to zero with a slower rate at higher magnetic fields and shows a broadening behavior. Applying the magnetic field leads to the broadening of the superconducting transition region and decreases the offset superconducting transition temperature. The experimental resistivity data satisfies the thermally activated flux creep model.

کلیدواژه‌ها [English]

  • Crystal structure
  • ٍElectric property
  • Superconductivity
  • YBCO family
 [1] J.G. Bednorz, K.A. Müller, “Possible high Tc superconductivity in the BaLaCuO system,” Zeitschrift für Physik B Condensed Matter, Vol. 64, pp. 189–193, 1986.
[2] A.L. Patrick, N. Nagaosa, X.G. Wen, “Doping a Mott insulator: Physics of high-temperature superconductivity,“ Review of Modern Physics, Vol. 78, pp.17-78, 2006.
[3] M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, C.W. Chu, “Superconductivity


at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure,“
Physical Review Letters, Vol. 58, pp. 908-910, 1987.
[4] R. Hackl, “Superconductivity in copper-oxygen compounds,” Crystalline Materials, Vol. 226, pp. 323-342, 2011.
[5] C. Park, R.L. Snyder, “Structures of High Temperature Cuprate Superconductors,” Journal of the American Ceramic Society, Vol. 78, pp. 3171-3194, 1995.
[6] J.Y. Genoud, T. Graf, G. Triscone, A. Junod, J. Muller, “Variation of the superconducting and structural properties of Y2Ba4Cu7Oz with oxygen content (14.1 <z< 15.3, 30KTc⩾ 95K),” Physica C: Superconductivity and its Applications, Vol. 192, pp. 137-146, 1992.
[7] J. Eck, US61/130,637, U.S. Provisional Patent, 2008.
[8] A. Aliabadi, Y. Akhavan Farshchi, M. Akhavan, “A new Y-based HTSC with Tc above 100K,” Physica C: Superconductivity and its Applications, Vol. 469, pp. 2012-2014, 2009.
[9] V. Rouco, E. Bartolomé, B. Maiorov, A. Palau, L. Civale, X .Obradors, T. Puig, “Vortex creep in TFA YBCO nanocomposite films,” Superconductor Science and Technology, Vol. 27, pp. 115008-115015, 2014.
[10] S.K.H. Lam, “Observation of thermally activated flux creep in microbridges,” Superconductor Science and Technology, Vol. 11, pp. 1177–1180, 1998.
[11] P.W. Anderson, “Theory of Flux Creep in Hard Superconductors,” Physical Review Letters, Vol. 9, pp. 309-311, 1962.
[12] T.T.M. Palstra, B. Batlogg, L.F. Schneemeyer, J.V. Waszczak, “Role of anisotropy in the dissipative behavior of high temperature superconductors,” Physical Review B, Vol. 43, pp. 3756-3759, 1991.
[13] V. Ambegaokar and B.I. Halperin, “Voltage Due to Thermal Noise in the dc Josephson Effect,” Phys. Lett., Vol. 22, pp. 1364-1366, 1969.
[14] M. Mazaheri, S. Jamasb, “Electrical transport in the superconducting and normal states in Y2Ba5Cu7Ox high temperature superconductor,” Solid State Communications, Vol. 234, pp. 21–25, 2016.
[15] T. Kruaehong, “Preparation and Characterization of the New Y257 Superconductors,” Advanced Materials Research, Vol 770, pp. 22-25, 2013
[16] T. Kruaehong, “Electrical properties and crystal structure of Y123, Y358 and Y257/Y211 composite bulk superconductors,” International Journal of Physical Sciences, Vol. 9, pp. 360-367, 2014.
[17] M. Mazaheri, S. Ghasemi, A. Heidarpour, “An Approach to Synthesis a New Superconductor Belonging to the YBCO Family: Y2Ba5Cu7Ox,” Journal of Superconductivity and Novel Magnetism, Vol. 28, pp. 2637–2640, 2015.
[18] T. Kruaehong, S. Sujinnapram, T. Nilkamjon, S. Ratreng and P. Udomsamuthirun, “Fabrication of the new Y257 bulk superconductor by melt process,” Key Engineering Materials, Vol. 675-676, pp 307-311, 2016. 
[19] T. Kruaehong, S. Sujinnapram, P. Udomsamuthirun, T. Nilkamjon and S. Ratreng, “The Effect of Ti doped on the Structure of Y134 and Y257 Superconductors,” Current Applied Science and Technology, Vol. 18, pp. 126-132, 2018.
[21] ه. احمدی مقدم، م.ح. پایدار، "بررسی تأثیر اندازه ذرات پودر بر ریزساختار، خواص مکانیکی و هدایت الکتریکی سرامیک های سدیم بتا آلومینا" مجله مواد نوین، جلد 9، شماره 4، ش. ص. 107-116، تابستان 1398.
[22] H.S. Gamchi, G.J. Russel, K. N. R. Tailor, “Resistive transition for YBa2Cu3O7-δ-Y2BaCuO5 composites: Influence of a magnetic field,” Physical Review B, Vol. 50, pp. 12950-12958, 1994.
[23] P. Scherrer, “Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen,” Göttinger Nachrichten Gesell., Vol. 2, pp. 98, 1918.
[24] ا. جعفری، "بررسی دو پرایمر نانو ساختار نیکل-فسفر و فسفات-روی بر مقاومت به خوردگی فولاد کم کربن رنگ شده"، مجله مواد نوین، جلد 9، شماره 4، ش. ص. 50-33، تابستان 1398.
[25] ص.ع. حسن زاده، ت. اصفهانی، "تاثیر زمان آسیاکاری مکانیکی بر سنتز نانوذرات هیدروکسی آپاتیت به روش مکانوشیمیایی"، مجله مواد نوین، جلد 9، شماره 3، ش. ص. 89-100، بهار 1398.
[26] ف. پیامی، ه. توکلی، "ساخت، مشخصه یابی و بررسی فرآیند حذف رنگ متیلن بلو توسط نانوذرات اکسید پروسکایت La0.9Sr0.1FeO3"، مجله مواد نوین، جلد 9، شماره 3، ش. ص. 168-145، بهار 1398.
[27] C.P. Poole, H.A. Farach, R.J. Creswick, R. Prozorov, “Superconductivity”, 2nd edition, Academic Press, 2007.
[28] T.T.M. Palstra, B. Batlogg, L.F. Schneemeyer, J.V. Waszczak, “Thermally Activated Dissipation in Bi2.2Sr2Ca0.8Cu2O8+δ,” Physical Review Letters, Vol. 61 pp. 1662-1665, 1988.
[29] T.T.M. Palstra, B. Batlogg, R.B. vanDover, L.F. Schneemeyer, J.V. Waszczak, “Critical currents and thermally activated flux motion in high-temperature superconductors,” Applied Physics Letters, Vol. 54, pp. 763-765, 1989.
[30] A.P. Malozemoff, T.K. Worthington, E. Zeldov, N.C. Yeh, M.W. Mc Elfresh, F. Holtzberg, “Strong Correlation and Superconductivity”, Springer Series in Solid State Science, Springer-Verlag, 1989.
[31] T.T.M. Palstra, B. Batlogg, R.B. van Dover, L.F. Schneemeyer, J.V.Waszczak, “Dissipative flux motion in high-temperature superconductors,” Physical Review B, Vol. 41, pp. 6621-6632, 1990.
[32] M. Tinkham, “Resistive Transition of High Temperature Superconductors,” Physical Review Letters, Vol. 61, pp. 1658-1661, 1988.
[33] R. Gross, P. Chaudhari, D. Dimos, A. Gupta, G. Koren, “Thermally activated phase slippage in high-Tc grain-boundary Josephson junctions,” Physical Review Letters, Vol. 64, pp. 228-231, 1990.
[34] Y. Yeshurun, A.P. Malozemoff, “Giant Flux Creep and Irreversibility in an Y-Ba-Cu-O Crystal: An Alternative to the Superconducting-Glass Model,” Physical Review Letters, Vol. 60, pp. 2202-2205, 1988.
[35] T. Yang, Z.H. Wang, H. Zhang, J. Fang, Y. Nie, L. Qiu, S.Y. Ding, “Effective activation energy and phase diagram in the Er doping MTG-YBa 2Cu 3O 7- δ crystal,” Physica C: Superconductivity and its Applications, Vol. 384, pp. 130-136, 2003.
[36] H. Shakeripour, M. Akhavan, “Thermally activated phase-slip in high temperature cuprates,” Superconductor Science and Technology, Vol. 14, pp. 234-239, 2001.