ساخت و ارزیابی خواص سطحی و زیست‌تخریب‌پذیری داربست نانو فیبری پلی کاپرولاکتون /کراتین حاوی نانولوله‌کربن برای کاربرد در مهندسی بافت استخوان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 هیأت علمی دانشگاه آزاد واحد یزد- مدیر گروه رشته مهندسی پزشکی دانشگاه آزاد اسلامی واحد یزد

2 دانشحو

3 دانشجو

چکیده

طراحی داربست‌هایی با ساختار فیزیکی مناسب با امکان چسبندگی و تکثیر سلول‌ها به سطح در بازسازی و ترمیم بافت استخوان نقش‌ مؤثری ایفا می‌کنند. در این تحقیق، داربست پلی‌کاپرولاکتون/ کراتین/ نانولوله‌کربن به روش الکتروریسی جهت کاربرد در مهندسی بافت استخوان ساخته شد و تأثیر نانولوله‌های کربن (CNT) بر رشد سلول‌های استخوانی مورد ارزیابی قرار گرفت. برای دستیابی به این هدف، مورفولوژی سطح، درصد تخلخل، سطح ویژه، خواص مکانیکی و گروه‌های عاملی موجود در داربست‌ها به ترتیب با میکروسکوپ الکترونی روبشی (SEM)، روش جابجایی مایع، تست BET، آزمون استحکام کششی و طیف‌سنجی مادون‌قرمز تبدیل فوریه (FTIR) موردبررسی قرار گرفت. به دلیل حضور نانولوله‌های کربن در نانوالیاف، میانگین قطر الیاف در داربست‌ بدون CNT نسبت به داربست حاوی CNT از مقدار nm ۱۳۸ به nm ۷۵ کاهش و مقدار سطح ویژه نانوالیاف حاوی CNT افزایش یافت. اندازه تخلخل داربست حاوی CNT، mμ ۶۸۰ محاسبه گردید که میزان مناسبی برای رشد و تکثیر سلول‌های استخوانی می‌باشد. رفتار تخریب‌پذیری داربست‌ها با قرار دادن نمونه‌ها برای ۶ هفته در محلول PBS ارزیابی گردید که ۵۰% تخریب در داربست حاوی نانولوله‌کربن مشاهده شد. همچنین، درصد زنده‌مانی سلول‌ها با آزمون MTT و چسبندگی سلول‌های استخوانی بر روی سطح داربست‌ها با میکروسکوپ SEM ارزیابی شد. حضور نانولوله‌های کربن و کراتین در داربست‌ سبب افزایش رشد و تکثیر سلول‌های استئوبلاست شد. بنابراین نتایج حاصل از این مطالعه، داربست پلی‌کاپرولاکتون/ کراتین/ نانولوله‌کربن را داربستی مناسب جهت کاربرد در مهندسی بافت استخوان معرفی می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

Fabrication and Evaluation of Surface and Biodegradable Properties of Polycaprolactone/Keratin Nanofibers Scaffolds containing Carbon Nanotube for Use in Bone Tissue Engineering

نویسندگان [English]

  • ٰVida Haghighi 2
  • Marjan Mirhaj 3
2 Ph.D. Student
3 Ph.D Student
چکیده [English]

Designing scaffolds that possess superior physical properties with cell adhesion and proliferation capabilities significantly promotes bone tissue repair and regeneration. In this study, polycaprolactone (PCL)/keratin/ carbon nanotube (CNT) scaffold was fabricated using the electrospinning method for bone tissue engineering and the effects of CNTs on bone cells growth was evaluated. For this purposes, surface morphology, porosity, specific surface area, mechanical properties and functional groups of scaffolds were examined by scanning electron microscope (SEM), displacement liquid method, brunauer-emmett-teller (BET)test, tensile strength test and Fourier transform infrared spectroscopy (FTIR), respectively. Due to the presence of CNTs in nanofibers, the average fibers diameter in scaffolds containing CNTs in comparison to the scaffold without CNT reduced from 138 nm to 75 nm and the specific surface of nanofibers containing CNT increased. Pore size of scaffold containing CNTs was calculated 680 mμ that this size can be proper for bone cell growth. Biodegradable behavior of scaffolds was determined by immersing samples in the PBS solution for 6 weeks that the results showed 50% degradation in CNT scaffolds. Also, bone cell viability and cell adhesion on scaffolds surface were evaluated via the MTT test and SEM. The presence of CNTs and keratin in scaffolds increased osteoblast cells' growth and proliferation. In conclusion, the findings demonstrated that PCL/keratin/CNT scaffolds can be suggested for bone tissue engineering applications.

کلیدواژه‌ها [English]

  • "Bone tissue engineering"
  • "keratin"
  • "Carbon nanotube"
  • "Scaffold"
  • "Electrospining"
1- D. Tang, RS. Tare, LY. Yang, DF. Williams, KL. Ou and RO. Oreffo, "Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration'', Biomaterials, Vol.83, pp.363-82, 2016.     
2- HT. Lu, TW. Lu, CH. Chen and FL. Mi, "Development of genipin-crosslinked and fucoidan-adsorbed nano-hydroxyapatite/ hydroxypropyl chitosan composite scaffolds for bone tissue engineering'', International journal of biological macromolecules, Vol. 128, pp. 973-84, 2019.
3- A. Sonoda, N. Nitta, S. Ohta, A. Nitta-Seko, S. Morikawa, Y. Tabata, M. Takahashi and K. Murata, " Controlled release and antitumor effect of pluronic F127 mixed with cisplatin in a rabbit model'', Cardiovascular and interventional radiology, Vol. 33, pp. 135-42, 2010.     
4- م. مظفری، ن. جوهری و م.ح.  فتحی،  "داربست کامپوزیتی پلی‌کاپرولاکتون-هیدروکسی آپاتیت: بررسی تاثیر درصد ذرات هیدروکسی آپاتیت و مقایسه ذرات با سایز نانومتری و میکرومتری و اثر آن‌ها بر خواص مکانیکی و زیست‌تخریب‌پذیری داربست" فصلنامه علمی-پژوهشی مواد نوین، سال5 شماره 20، ص142-131، تابستان 1394.
5-S. Deepthi, J. Venkatesan, SK. Kim, JD. Bumgardner and R. Jayakumar, ''An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering'', International journal of biological macromolecules, Vol 93, pp. 1338-53, 2016.
6- M. Martina and DW. Hutmacher, ''Biodegradable polymers applied in tissue engineering research: a review'', Polymer International, Vol. 56 , pp.145-57, 2007.
7- Y. Yan, H. Chen, H. Zhang, C. Guo, K. Yang, K. Chen, R. Cheng, N. Qian, N. Sandler, YS. Zhang and H. Shen, ''Vascularized 3D printed scaffolds for promoting bone regeneration'', Biomaterials, Vol. 190, pp. 97-110, 2019.
8- D. Shen, X. Wang, L. Zhang, X. Zhao, J. Li, K. Cheng and J. Zhang, ''The amelioration of cardiac dysfunction after myocardial infarction by the injection of keratin biomaterials derived from human hair'', Biomaterials, Vol. 32, pp. 9290-9, 2011.
9- Y. Li, Y. Wang, J. Ye, J. Yuan and Y. Xiao, ''Fabrication of poly (ε-caprolactone)/keratin nanofibrous mats as a potential scaffold for vascular tissue engineering'' ,Materials Science and Engineering: C, Vol. 68, pp.177-83, 2016.
10- P. Kakkar, S. Verma, I. Manjubala and B. Madhan, ''Development of keratin–chitosan–gelatin composite scaffold for soft tissue engineering'' ,Materials Science and Engineering: C, Vol. 45, pp. 343-7, 2014.
11- ZM. Mahdieh, V. Mottaghitalab, N. Piri and AK. Haghi, ''Conductive chitosan/multi walled carbon nanotubes electrospun nanofiber feasibility'' Korean Journal of Chemical Engineering, Vol. 29, pp. 111-9, 2012.           
12- TH. Kim, T. Lee, W. El-Said and JW. Choi, ''Graphene-based materials for stem cell applications'', Materials, Vol. 8, pp. 8674-90, 2015.     
13- S. Sotiropoulou and NA. Chaniotakis, ''Carbon nanotube array-based biosensor'', Analytical and Bioanalytical Chemistry, Vol. 375, pp.103-5, 2003. 
14- Y. Liu, J. Lu, G. Xu, J. Wei, Z. Zhang and X. Li, ''Tuning the conductivity and inner structure of electrospun fibers to promote cardiomyocyte elongation and synchronous beating'', Materials Science and Engineering: C, Vol. 69, pp.865-74, 2016.
15- B. Subia, J. Kundu and SC. Kundu, Biomaterial scaffold fabrication techniques for potential tissue engineering applications., Tissue engineering, p.141, india, 2010.    
16- K. Ren, Y. Wang, T. Sun, W. Yue, H. Zhang, '' Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes'', Materials Science and Engineering: C, Vol. 78, pp. 324-32, 2017.
17- W. Wang, B. Huang, JJ. Byun and P. Bartolo, '' Assessment of PCL/carbon material scaffolds for bone regeneration'', Journal of the mechanical behavior of biomedical materials, Vol. 93, pp. 52-60, 2019.
18- A. Oyefusi, O. Olanipekun, GM. Neelgund, D. Peterson, JM. Stone, E. Williams, L. Carson, G. Regisford and A. Oki, '' Hydroxyapatite grafted carbon nanotubes and graphene nanosheets: Promising bone implant materials'', Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol.132, pp. 410-6, 2014.
20- ED. Yildirim, X. Yin, K. Nair and W. Sun, '' Fabrication, characterization, and biocompatibility of single‐walled carbon nanotube‐reinforced alginate composite scaffolds manufactured using freeform fabrication technique, Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, Vol. 87, pp. 406-14, 2008.          
21- م. میرحاج، م. محمودی و ع. شیانی، " بررسی تاثیر نانوذرات هیدروکسی آپاتیت بر خواص نانوالیاف کراتین جهت کاربرد در مهندسی بافت، " سال 36 مواد پیشرفته در مهندسی، سال ۳۶ شماره ۴ ، ص۴۵-۵۷، زمستان1396..
22- FM. Ghorbani, B. Kaffashi, P. Shokrollahi, E. Seyedjafari and A. Ardeshirylajimi, '' PCL/chitosan/Zn-doped nHA electrospun nanocomposite scaffold promotes adipose derived stem cells adhesion and proliferation'', Carbohydrate polymers, Vol. 118, pp.133-42, 2015.
23- S. Gorgieva, L. Girandon and V. Kokol, '' Mineralization potential of cellulose-nanofibrils reinforced gelatine scaffolds for promoted calcium deposition by mesenchymal stem cells'', Materials Science and Engineering: C, Vol. 73 , pp. 478-89, 2017.  
24- Y. Esparza, A. Ullah, Y. Boluk and J. Wu, '' Preparation and characterization of thermally crosslinked poly (vinyl alcohol)/feather keratin nanofiber scaffolds'', Materials & Design, Vol. 5, pp.133:1-9, 2017.           
25- X. Zhao, YS. Lui, CK. Choo, WT. Sow, CL. Huang, KW. Ng, LP. Tan, JS. Loo, '' Calcium phosphate coated Keratin–PCL scaffolds for potential bone tissue regeneration'', Materials Science and Engineering: C, Vol. 49, pp.746-53, 2015.
26- H. Fong, I. Chun and DH. Reneker, ''  Beaded nanofibers formed during electrospinning'', Polymer, Vol. 40,  pp. 4585-92, 1999.          
27- C. Kriegel, KM. Kit, DJ. McClements and J. Weiss, ''Influence of surfactant type and concentration on electrospinning of chitosan–poly (ethylene oxide) blend nanofibers'', Food Biophysics, Vol. 4, pp. 213-28, 2009.           
28- MA. Shokrgozar, F. Mottaghitalab, V. Mottaghitalab and M. Farokhi, ''Fabrication of porous chitosan/poly (vinyl alcohol) reinforced single-walled carbon nanotube nanocomposites for neural tissue engineering'', Journal of biomedical nanotechnology, Vol. 7, pp. 276-84, 2011.
29- G. Salimbeygi, K. Nasouri, AM. Shoushtari, R. Malek and F. Mazaheri, ''Fabrication of polyvinyl alcohol/multi-walled carbon nanotubes composite electrospun nanofibres and their application as microwave absorbing material'', Micro & Nano Letters, Vol.8, pp. 455-9, 2013.
30- M. Boakye, N. Rijal, U. Adhikari and N. Bhattarai, ''Fabrication and characterization of electrospun PCL-MgO-keratin-based composite nanofibers for biomedical applications'', Materials, Vol. 8, pp.4080-95, 2015.           
31- RA. Ahmed, AM. Fekry and RA. Farghali, ''A study of calcium carbonate/multiwalled-carbon nanotubes/chitosan composite coatings on Ti–6Al–4V alloy for orthopedic implants'', Applied Surface Science, Vol. 285, pp. 309-16, 2013.
 
32- K. Wang, J. Pang, L. Li, S. Zhou, Y. Li and T. Zhang, '' Synthesis of hydrophobic carbon nanotubes/reduced graphene oxide composite films by flash light irradiation'' ,  Frontiers of Chemical Science and Engineering,  Vol. 12, pp. 376-82, 2018.
33- M. Zarei and S. Karbasi, '' Evaluation of the effects of multiwalled carbon nanotubes on electrospun poly (3-hydroxybutirate) scaffold for tissue engineering applications. Journal of Porous Materials'', Vol. 25, pp. 259-72, 2018.
34- Y. Mohammadi, H. Mirzadeh, FE. Moztarzadeh, M Solmeymani, Jabari E. ''Design and fabrication of biodegradable porous chitosan/gelatin/tricalcium phosphate hybrid scaffolds for tissue engineering'', Iranian journal of journal of polymer science and technology (Persian), Vol. 20, pp. 297-308, 2007.         
35- FL. Huang, QQ. Wang, QF. Wei, WD. Gao, HY. Shou and SD. Jiang, ''Dynamic wettability and contact angles of poly (vinylidene fluoride) nanofiber membranes grafted with acrylic acid'', Express Polymer Letters, Vol.4, pp. 551–558, 2010.
 
36- ZX. Meng, W. Zheng, L. Li and YF. Zheng, ''Fabrication and characterization of three-dimensional nanofiber membrance of PCL–MWCNTs by electrospinning'', Materials Science and Engineering: C, Vol. 30, pp. 1014-21, 2010.     
37- K. Saeed, SY. Park, HJ. Lee, JB. Baek and WS. Huh, ''Preparation of electrospun nanofibers of carbon nanotube/polycaprolactone nanocomposite'', Polymer, Vol. 47, pp. 8019-25, 2006.
38- A. Edwards, D. Jarvis, T. Hopkins, S. Pixley and N. Bhattarai, '' Poly (ε‐caprolactone)/keratin‐based composite nanofibers for biomedical applications'', Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 103, pp. 21-30, 2015.       
39- G. Liao, S. Jiang, X. Xu and Y. Ke, ''Electrospun aligned PLLA/PCL/HA composite fibrous membranes and their in vitro degradation behaviors'', Materials Letters, Vol. 82, pp. 159-62, 2012.     
40- JN. Mackle, DJ. Blond, E. Mooney, C. McDonnell, WJ. Blau, G. Shaw, FP. Barry, JM. Murphy and V. Barron, ''In vitro characterization of an electroactive carbon‐nanotube‐based nanofiber scaffold for tissue engineering'', Macromolecular bioscience, Vol. 11, pp. 1272-82, 2011.       
41- AS. Khan, AN. Hussain, L. Sidra, Z. Sarfraz, H. Khalid, M. Khan, F. Manzoor, L. Shahzadi, M. Yar and IU. Rehman, ''Fabrication and in vivo evaluation of hydroxyapatite/carbon nanotube electrospun fibers for biomedical/dental application'', Materials Science and Engineering:C, Vol. 80, pp. 387-96, 2017.
42- H. Zhang, '' Electrospun poly (lactic-co-glycolic acid)/multiwalled carbon nanotubes composite scaffolds for guided bone tissue regeneration'', Journal of Bioactive and Compatible Polymers, Vol. 26, pp. 347-62, 2011.