بررسی خصوصیات ساختاری و مغناطیسی لانتانیوم و باریم جانشانی شده در نانوذرات مولتی فروئیک فریت بیسموت در حضور سورفکتانتهای طبیعی برپایه شکر با استفاده از روش همرسوبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری رشته مهندسی متالورژی- مواد، گروه مهندسی مواد، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران

2 دانشیار گروه مهندسی مواد، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران

3 استادیار گروه مهندسی مواد، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران

چکیده

مقدمه: در کار حاضر نانوذرات فریت بیسموت جانشانی شده با باریم و لانتانیومBi1-xLaxFeO3 Bi0.9-YLa0.1BaYFeO3 (X= 0, 0.05, 0.1, 0.15, Y= 0.05, 0.1) با بکارگیری روش همرسوبی در حضور فعال کننده های سطحی طبیعی گوناگون بر پایه شکر سنتز شدند.
روش: خصوصیات ساختاری، مغناطیسی، اندازه و مورفولوژی این نانوذرات سنتزی با بکارگیری تکنیک های گوناگون همچون پراش اشعه ایکس(XRD)، طیف‌سنجی مادون قرمز تبدیل فوریه (FT-IR)، میکرسکوپ الکترونی روبشی (FE-SEM)، میکرسکوپ الکترونی عبوری(TEM) ، توزیع اندازه ذرات (DLS) و مغناطیس سنج نمونه مرتعش (VSM) مورد بررسی قرار گرفتند.
یافته ها: نتایج پراش اشعه ایکس یک تغییر فاز از ساختار رومبوهدرال به تتراگونال با افزایش مقدار لانتانیوم و باریم در ساختار فریت بیسموت و نتایج میکرسکوپ الکترونی عبوری اندازه ذرات حدود 15 نانومتر را برای نانوذرات سنتزی Bi0.9La0.1FeO3 نشان می دهند. همچنین یک دست بودن ذرات و مورفولوژی تقریباً کروی با میکرسکوپ الکترونی روبشی مورد بررسی قرار گرفت. آنالیز توزیع اندازه ذرات و تأثیر فعال کننده های سطحی طبیعی برپایه شکر همچون ساپونین (Saponin)، فعال کننده سطحی طبیعی بر پایه شکر و استخراج شده از درخت صدر، تریتون (Triton CG-100)، کروسین (Crocine) و N-اکتیل-بتا-D- گلوکوزید در سنتز نانوذرات Bi0.9La0.1FeO3 مورد بررسی قرار گرفت که فعال کننده سطحی کروسین بهترین عملکرد در خواص مغناطیسی و کاهش اندازه نانوذرات را از خود نشان می دهد. علاوه بر این خاصیت مغناطیسی ذرات با بکارگیری مغناطیس سنج ارتعاشی مورد بررسی قرار گرفت.
نتیجه گیری: نتایج حاکی از آن است که هنگامی که مقدار لانتانیوم از لحاظ استوکیومتری برابر با X=0.1 باشد بهترین عملکرد مغناطیسی مشاهده می شود.

کلیدواژه‌ها


عنوان مقاله [English]

The investigation of Structural and Magnetic Properties of Lanthanum and Barium Located into Multiferroic Ferrite Bismuth Nanoparticles in the Presence of Sugar Based Natural Surfactants Using Coprecipitation Approach

نویسندگان [English]

  • Mohammadhossein Farghadin 1
  • Reza Derakhshandeh-Haghighi 2
  • Navid Hosseinabadi 3
  • esmaeil jafari 3
1 Department of Materials Science and Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
2 Department of Materials Science & Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
3 Department of Materials Science and Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
چکیده [English]

Nanoparticles are comprised from dozens or hundreds of atoms or molecules with different sizes and morphologies are being applied widely due to their unique properties in chemistry, physic, and biology. Multiferroic compounds have been considered significantly owing to their applications arising from their ferromagnetic, ferroelectric, and fibroelastic properties. Among all multiferroic compounds, ferrite bismuth (BiFeO3) has attracted remarkable attentions which is a weak pad-ferromagnetic in the magnetic points of view. Of the best impressive approaches for improving its properties is the substitution of the metals including La, Ba, Pd, Sr, and Ca in A positions or Ti, Cr, and Mn in B positions through BiFeO3 scaffold. In this work, Bi1-XLaxFeO3 and Bi0.9-YLa0.1BaYFeO3 nanoparticles were synthesized and the structural and magnetic properties of synthesized nanoparticles were also studied.
BiFeO3 particles were synthesized by mixing the Bi(NO3)3.5H2O, La(NO3)2.6H2O, Ba(NO3)2.4H2O, and Fe(NO3)3.9H2O precursors in nitric acid in the presence of surfactants Saponin, Triton CG-100, Crocin, or N-octyl-beta-D-glucoside and tetraethylenepentamine as base.

کلیدواژه‌ها [English]

  • Ferrite Bismite
  • Nanoparticles
  • Surfactants
  • Coprecipitation Methods
  • Magnetic Properties
  1. Daniel, Marie-Christine, and Didier Astruc. "Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology." Chemical reviews 104.1 (2004): 293-346.
  2. Burda, Clemens, et al. "Chemistry and properties of nanocrystals of different shapes." Chemical reviews 105.4 (2005): 1025-1102.
  3. Löwen, Hartmut. "Colloidal dispersions in external fields: recent developments." Journal of Physics: Condensed Matter 20.40 (2008): 404201.
  4. Kazemnejadi, Milad, et al. "Imidazolium chloride-Co (iii) complex immobilized on Fe3O4@SiO2 as a highly active bifunctional nanocatalyst for the copper-, phosphine-, and base-free Heck and Sonogashira reactions." Green Chemistry 21.7 (2019): 1718-1734.
  5. Fernandez-Garcia, M., et al. "Nanostructured oxides in chemistry: characterization and properties." Chemical reviews 104.9 (2004): 4063-4104.
  6. Esmaeilpour, Mohsen, Alireza Sardarian, and Jaber Javidi. "Dendrimer-encapsulated Pd (0) nanoparticles immobilized on nanosilica as a highly active and recyclable catalyst for the copper-and phosphine-free Sonogashira–Hagihara coupling reactions in water." Catalysis Science & Technology 6.11 (2016): 4005-4019.
  7. 정유진. The mechanism of catalyzing reduction of 4-nitrophenol by quasimetallic nanoparticles and the critical function of NaBH4. Diss. 서울대학교 대학원, 2015.
  8. Khomskii, Daniel. "Trend: Classifying multiferroics: Mechanisms and effects." Physics 2 (2009): 20.
  9. Hu, Jia-Mian, et al. "High-density magnetoresistive random access memory operating at ultralow voltage at room temperature." Nature communications 2.1 (2011): 1-8.
  10. Ahmed, M. A., et al. "Size confinement and magnetization improvement by La3+ doping in BiFeO3 quantum dots." Solid state sciences 20 (2013): 23-28.
  11. Gholam, Turghunjan, et al. "Local electronic structure analysis of Zn-doped BiFeO3 powders by X-ray absorption fine structure spectroscopy." Journal of Alloys and Compounds 710 (2017): 843-849.
  12. Kumar, Amit, et al. "Magnetic, ferroelectric, and magnetodielectric properties of BiFeO3 ceramic co-doped with Eu and Gd." Journal of Physics and Chemistry of Solids 124 (2019): 19-23.
  13. Dong, Shuai, et al. "Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology." Advances in Physics 64.5-6 (2015): 519-626.
  14. Fan, Pengyuan, et al. "Large electric-field-induced strain in B-site complex-ion (Fe0.5Nb0.5) 4+-doped Bi1/2 (Na0.82K0.12) 1/2TiO3 lead-free iezoceramics" Ceramics International 44.3 (2018): 3211-3217.
  15. Pradhan, S. K., and B. K. Roul. "Electrical behavior of high resistivity Ce-doped BiFeO3 multiferroic." Physica B: Condensed Matter 407.13 (2012): 2527-2532.

  16. Pedro-García, F., et al. "Mechanically assisted synthesis of multiferroic BiFeO3: Effect of synthesis parameters." Journal of Alloys and Compounds 711 (2017): 77-84.
  17. Kumar, M. Mahesh, et al. "Ferroelectricity in a pure BiFeO3 ceramic." Applied Physics Letters 76.19 (2000): 2764-2766.
  18. Simões, Alexandre Zirpoli, Filiberto Gonzalez Garcia, and Carla dos Santos Riccardi. "Rietveld analysys and electrical properties of lanthanum doped BiFeO3 ceramics." Materials Chemistry and Physics 116.2-3 (2009): 305-309.
  19. Zhang, Jing, et al. "Structural evolution and magnetization enhancement of
    Bi1-xTbxFeO3." Journal of Physics and Chemistry of Solids 74.6 (2013): 849-853
    .
  20. Ederer, Claude, and Nicola A. Spaldin. "Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite." Physical Review B 71.6 (2005): 060401.
  21. Kumar, Amit, et al. "Linear and nonlinear optical properties of BiFeO3." Applied Physics Letters 92.12 (2008): 121915.
  22. Anwar, Armin, M. A. Basith, and Shamima Choudhury. "From bulk to nano: A comparative investigation of structural, ferroelectric and magnetic properties of Sm and Ti co-doped BiFeO3 multiferroics." Materials Research Bulletin 111 (2019): 93-101.
  23. Qian, F. Z., et al. "Multiferroic properties of Bi0.8Dy0.2−xLaxFeO3 nanoparticles"
    Journal of Physics D: Applied Physics 43.2 (2009): 025403
    .    
  24. Wu, Yu-Jie, et al. "Phase evolution and magnetic property of Bi1−xHoxFeO3 powders" Solid state communications 151.24 (2011): 1936 -1940.

  25. Bhushan, B., et al. "Enhancing the magnetic characteristics of BiFeO3 nanoparticles by Ca, Ba co-doping." Materials Chemistry and Physics 135.1 (2012): 144-149.
  26. Rout, Jyoshna, and R. N. P. Choudhary. "Structural transformation and multiferroic properties of Ba–Mn co-doped BiFeO3." Physics Letters A 380.1-2 (2016): 288-292.
  27. Hu, Gengxiang, Xun Cai, and Yonghua Rong. Structure. De Gruyter, 2021.
  28. Shami, M. Yasin, M. S. Awan, and M. Anis-ur-Rehman. "Phase pure synthesis of BiFeO3 nanopowders using diverse precursor via co-precipitation method." Journal of Alloys and Compounds 509.41 (2011): 10139-10144.
  29. Mishra, R. K., et al. "Dipolar and magnetic ordering in Nd-modified BiFeO3 nanoceramics." Journal of magnetism and magnetic materials 320.21 (2008): 2602-2607.
  30. Shannon, Robert D. "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides." Acta crystallographica section A: crystal physics, diffraction, theoretical and general crystallography 32.5 (1976): 751-767.
  31. García-Zaldívar, Osmany, et al. "BiFeO3 codoping with Ba, La and Ti: Magnetic and structural studies." Journal of Advanced Dielectrics 5.04 (2015): 1550034.
  32. Esmaeilpour, Mohsen, et al. "Facile synthesis of 1-and 5-substituted 1H-tetrazoles catalyzed by recyclable ligand complex of copper (II) supported on superparamagnetic Fe3O4@SiO2 nanoparticles." Journal of Molecular Catalysis A: Chemical 393 (2014): 18-29.

  33. Sardarian, Ali Reza, Milad Kazemnejadi, and Mohsen Esmaeilpour. "Bis-salophen palladium complex immobilized on Fe3O4@SiO2 nanoparticles as a highly active and durable phosphine-free catalyst for Heck and copper-free Sonogashira coupling reactions." Dalton Transactions 48.9 (2019): 3132-3145.
  34. Esmaeilpour, Mohsen, Ali Reza Sardarian, and Habib Firouzabadi. "Dendrimer‐ encapsulated Cu (Π) nanoparticles immobilized on superparamagnetic Fe3O4@SiO2 nanoparticles as a novel recyclable catalyst for N‐arylation of nitrogen heterocycles and green synthesis of 5‐substituted 1H‐tetrazoles." Applied Organometallic Chemistry 32.4 (2018): e4300.
  35. Sardarian, Ali Reza, Hassan Eslahi, and Mohsen Esmaeilpour. "Green, cost‐effective and efficient procedure for Heck and Sonogashira coupling reactions using palladium nanoparticles supported on functionalized Fe3O4@SiO2 by polyvinyl alcohol as a highly active, durable and reusable catalyst." Applied Organometallic Chemistry 33.7 (2019): e4856.
  36. Mohamed, S. H. "SnO2 dendrites–nanowires for optoelectronic and gas sensing applications." Journal of Alloys and Compounds 510.1 (2012): 119-124.
  37. Usharani, Nandhini J., and S. S. Bhattacharya. "Effect of defect states in the optical and magnetic properties of nanocrystalline NiO synthesised in a single step by an aerosol process." Ceramics International 46.5 (2020): 5671-5680.

مریم ناصری پور؛ آزاده اعظمی؛ احمد حسن پور " رشد و بررسی خواص مغناطیسی و نوری نانوساختارهای هسته-پوسته مگنتیت@اکسیدمس" فصلنامه علمی - پژوهشی مواد نوین، دوره 9، شماره 34، زمستان 1397، صفحه 155-164