بررسی نفوذ مولیبدن و تشکیل تقویت کننده‌‌های درجا درکامپوزیت مخلوط پودری Ti-10Mo-1.5B4C تف‌‌جوشی شده‌‌ی قوس پلاسمای جرقه‌‌ای در دما و زمان‌‌های مختلف

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، مهندسی مواد دانشگاه صنعتی سهند تبریز، تبریز، ایران

2 استاد، مهندسی مواد دانشگاه صنعتی سهند تبریز، تبریز، ایران

3 دانشیار، مهندسی مواد دانشکده فناوری‌های نوین، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

چکیده
مقدمه: بوراید تیتانیم و کاربید تیتانیم می‌‌تواند موجب تقویت آلیاژهای زمینه تیتانیم - مولیبدن، باشد. اگر این تقویت کننده‌‌ها بصورت درجا و آن هم با یک واکنش گرمازا (بین زمینه و تقویت کننده‌‌ی برون­جا) ایجاد شوند، گرمای آن واکنش نیز به نفوذ بیشتر مولیبدن در زمینه و درنتیجه تقویت فاز بتا منجر خواهد شد. هدف اصلی از انجام این پژوهش، بررسی تاثیر افزودن 5/1 درصد وزنی تقویت کننده برون­جای کاربید بور به آلیاژ تیتانیم - مولیبدن در دما و زمان‌‌های مختلف می‌‌باشد. بدین ترتیب تاثیر افزایش دما، زمان تف‌‌جوشی و گرمای واکنش گرمازا بر میزان چگالش، بهبود حلالیت مولیبدن در تیتانیم، تشکیل محصولات فازی هیبریدی ( تقویت‌‌کننده‌‌های درجا) و در پایان خواص مکانیکی نظیر استحکام کششی، استحکام پارگی عرضی و سختی بررسی می‌‌شود.  
روش‌‌: مخلوط پودری Ti-10Mo-1.5B4C، ابتدا تحت فشار10 مگاپاسکال و همزمان با افزایش تحت فشار میانی 20 مگاپاسکال و نهایتا بعد از رسیدن به دماهای تف‌‌جوشی (دماهای 1150، 1300 و °C1450) تحت فشار نهایی50 مگاپاسکال به مدت زمان 5 و 10 دقیقه قرار گرفتند و بدین ترتیب شش نمونه به روش تف‌‌جوشی قوس پلاسما ساخته شد. تحولات ریزساختاری، خواص فیزیکی و مکانیکی و آنالیز فازی نمونه‌‌های تف‌‌جوشی شده مورد ارزیابی قرار گرفت.
یافته‌‌ها: به طور کلی با ازدیاد دما و زمان تف‌‌جوشی، چگالی افزایش یافت فقط در دمای °C1450 بمدت 10 دقیقه کاهش جزئی مشاهده شد به همین ترتیب خواص مکانیکی نیز تقریبا روند مشابهی نشان داد. در واقع تاثیر افزایش دما بر پیشرفت واکنش تیتانیم - کاربید بور بیشتر از افزایش زمان تف‌‌جوشی بوده است. ضمنا لازم به ذکر است که افزایش دما و زمان تف‌‌جوشی منجر به انحلال بیشتر مولیبدن درزمینه تیتانیم شده است، ولی در اینجا نقش واکنش گرمازای تقویت کننده برون‌‌جا با زمینه را نیز نباید نادیده گرفت.
نتیجه‌‌گیری: افزایش دما و زمان تف‌‌جوشی منجر به تولید فازهای درجای بیشتر می‌‌شود که پیوند قوی با زمینه Ti دارند. در ضمن استفاده از تقویت کننده درجایی که با زمینه واکنش گرمازا دهد و تقویت کننده درجای مورد نیاز را فراهم نماید به نوبه‌‌ی خود از اهمیت ویژه ای در همگن سازی (در اینجا مولیبدن) آلیاژ خواهد داشت. 

کلیدواژه‌ها


عنوان مقاله [English]

Mo diffusion and In-situ formation of reinforcement in spark plasma sintering of powder mixed Ti-10Mo-1.5B4C composite at different temperatures and holding time

نویسندگان [English]

  • Marjan Ranjbari 1
  • Maziyar Azadbeh 2
  • Abbas Sabahi Namini 3
1 Faculty of Materials Engineering, Sahand University of Technology, Tabriz, Iran
2 Faculty of Materials Engineering, Sahand University of Technology, Tabriz, Iran
3 Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده [English]

Abstract
Introduction: Titanium boride and titanium carbide are the most important ceramic particles to reinforce titanium-molybdenum alloys. If an external reinforcement with an exothermic reaction causes the production of those reinforcements, the heat of reaction can promote the diffusion of molybdenum in the Matrix.
Methods: In this research, Ti–10 wt.% Mo–1.5 wt.% B4C composite samples was consolidated in a SPS machine following cold uniaxial precompaction by applying maximum 10 MPa and then SPSed in vacuum below 1 Pa at 1150, 1300 and 1450°C with 50°C/min heating rate under 20 MPa pressure. Subsequently at each sintering temperature the applied pressure was increased to 50 MPa and process continued for 5 and 10 min. Microstructural changes, physical and mechanical properties as well as phase analysis of produced composites were evaluated.
Findings: Totally, with rising sintering temperature and time, the density increases. Only at 1450°C for 10 min, a slight decrease in density was observed. Similarly, the mechanical properties improved. Actually, increasing sintering temperature influences the progress of the titanium-boron carbide reaction and the decreasing porosity greater than time. Here, not only increasing sintering temperature and time but also the heat of exothermic reaction encourages the diffusion of molybdenum to matrix and lead to better homogenization, consequently.  Under similar elaborated arrangement, also achieving improved mechanical properties is more accessible.  

کلیدواژه‌ها [English]

  • Titanium-molybdenum composite
  • boron carbide
  • Titanium boride and titanium carbide
  • spark plasma sintering
  • in situ and ex situ reinforcements
[1]        B.A. Obadele, O.O. Ige, P.A. Olubambi, "Fabrication and characterization of titanium-nickel-zirconia matrix composites prepared by spark plasma sintering," J. Alloys Compd, (2017),710, p. 825–830.
[2]        H. Attar, S. Ehtemam-Haghighi, D. Kent, M.S.Dargusch, "Recent developments and opportunities in additive manufacturing of titanium-based matrix composites," A review. Int. J. Mach. Tools Manuf. 2018.133, p. 85–102.
[3]        Luo, R. D., Yuan, Y. X., Ren, J. K., Li, F., Yang, Y. J., He, Z. Y., & Jiang, Y. H, "Novel function-structure-integrated Ti-Mo-Cu alloy combined with excellent antibacterial properties and mechanical compatibility as implant application," Journal of Alloys and Compounds, 2023, 945,169323.
[4] P.    Mohan, D. K. Rajak, C. I. Pruncu, Behera, A., & Amigó-Borrás, V, "Influence of β-phase stability in elemental blended Ti-Mo and Ti-Mo-Zr alloys," Micron, 2021, 142, 102992.
[5]        Leyens, C. and M. Peters, Titanium and titanium alloys: fundamentals and applications, John Wiley & Sons, 2003.
[6]        Lütjering, G.J.M.S. and E. A, "Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys," (1998). 243(1-2), p. 32-45.
[7]        S.A. Delbari, A. Sabahi Namini, M. Shahedi Asl, "Hybrid Ti matrix composites with TiB2 and TiC compounds," Mat. Today.comm, 2019.
[8]        M. S. Delbari, S. A., Azadbeh, M., Namini, A. S. Mehrabian, M. Nguyen, V. H. & Mohammadi, M, "Nanoindentational and conventional mechanical properties of spark plasma sintered Ti–Mo alloys," Journal of materials research and technology, 2020, 9(5), p. 10647-10658.
[9]        Im, Y. D., & Lee, Y. K., "Effects of Mo concentration on recrystallization texture, deformation mechanism and mechanical properties of Ti–Mo binary alloys.," Journal of Alloys and Compounds, (2020), 821, p. 153508.
[10]      D. Hill, Microstructure and mechanical properties of titanium alloys reinforced with titanium boride, The Ohio State University, 2006.
[11]      Qian, M. and F.H. Froes, Titanium powder metallurgy, science, technology and applications, 2015.
[12]      A. Sabahi Namini, S.A.A. Dilawary, A. Motallebzadeh, M.Shahedi Asl, "Effect of TiB2 addition on the elevated temperature tribological behavior of spark plasma sintered Ti matrix composite," Compos. Part B Eng (2019). 172, p. 271–280.
[13]      M.D. Hayat, H. Singh, Z. He, P. Cao, "Titanium metal matrix composites:an overview," Compos. Part A Appl. Sci. Manuf (2019).121, p. 418–438.
[14]      K. Shirvanimoghaddam, E. Ghasali, A. Pakseresht, S.M.R.Derakhshandeh, M. Alizadeh, T. Ebadzadeh, M. Naebe, "Super hard carbon microtubes derived from natural cotton for development of high performance titanium composites," J. Alloys Compd. (2019).775, p. 601–616.
[15]      E.L. Calvert, A.J. Knowles, J.J. Pope, D. Dye, M. Jackson, "Novel high strength titanium–titanium composites produced using field assisted sintering technology (FAST)," Scr. Mater. (2019).159, p. 51–57.
[16]      X. Wang, L. Wang, F. Yang, L. Luo, H. Yan, X. Liu, X. Li, R.Chen, Y. Su, J. Guo, H. Fu, "Hydrogen induced microstructure evolution of titanium matrix composites," Int. J. Hydrogen Energy.2018. 43, p. 9838–9847.
[17]      CHEN Yu-yong,XU Li-juan, LIU Zhi-guang,KONG Fan-tao, CHEN Zi-yon, "Microstructures and properties of titanium alloys Ti-Mo for dental use," Trans. Nonferrous Met. SOC. China (2006), p. 824-828.
[18] ز.نقدی، م.آزادبه، م.ر.اطمینان فر، ل.فتح یونس, "پوشش دهی الکتروشیمیایی کلسیم فسفات بر روی زیرلایه کامپوزیتی  Ti-10Mo-X(TiC&TiB2) تهیه شده به روش تفجوشی قوس پلاسما" فصل نامه ی علمی - پژوهشی مواد نوین، دوره 13، شماره 48، تابستان 1401، صفحه 33-52.
 [19]     LIU Yong, WEI Wei-feng, ZHOU Ke-chao,CHEN Li-fang, TANG Hui-pin, "Microstructures and mechanical behavior of PM Ti-Mo alloy," J . CENT. SOUTH UNIV. TECHNOL, 2003, Vol. 10, No. 2.
[20]      M. Shahedi Asl, A. Sabahi Namini, A. Motallebzadeh, M. Azadbeh, "Effects of sintering temperature on microstructure and mechanical properties of spark plasma sintered titanium," Mater.Chem. Phys. (2018).203, p. 266–273.
[21] ع. ص. نمینی, بررسی تاثیر تقویت کننده های بورایدی و کاربیدی بر خواص فیزیکی و مکانیکی کامپوزیت های زمینه تولید شده به روش تف جوشی پلاسمای جرقه ای، رساله دکتری, تبریز: دانشکده مهندسی مواد، دانشگاه صنعتی سهند, 1396.
[22]      S. K. V.S. Balaji, "Densification and microstructural studies of titanium–boron carbide (B4C) powder mixture during spark plasma sintering," Powder Technology, 31 May 2014.
[23]      L. Jia, Sh. fengLi, H. iImai, B. Chen, k. Kondoh, "Size effect of B4C powders on metallurgical reaction and resulting tensile properties of Ti matrix composites by in-situ reaction from Ti–B4C system under a relatively low temperature," Materials Science & Engineering, 10 July 2014.
 
 [24]     L. Jia, X. Wang, B. Chen, H. Imai, S. Li, Z. Lu, K. Kondoh, "Microstructural evolution and competitive reaction behavior of Ti–B4C system under solid-state sintering," J. Alloys Compd.2016, 687, p. 1004–1011.
[25]      S. Xu, C. Zhou, Y. Liu, B. Liu, K. Li, " Microstructure and mechanical properties of Ti–15Mo–xTiC composites fabricated by in-situ reactive sintering and hot swaging," J. Alloys Compd.2018 ,738, p. 188–196.
[26]      A. Sabahi Naminia, M. Azadbeha, and M. Shahedi Asl, "Effects of in-situ formed TiB whiskers on microstructure and mechanical properties of spark plasma sintered Ti-B4C and Ti-TiB2 composites," Scientia Iranica B (2018) 25(2), p. 762-771.
[27]      A. Sabahi Namini, M.Shahedi Asl, A.Delbari, "Influence of Sintering Temperature on Microstructure and Mechanical," Metals and Materials International (2019).
 [28]     D. Annur, I. Kartika, S. Supriadi, B. Suharno, "Titanium and titanium based alloy prepared by spark plasma sintering method for biomedical implant applications," Mater. Res. (2021) Express 8, 012001.
[29]      German, R. M., Powder metallurgy science, Metal Powder Industries Federation, 105 College Rd. E, Princeton, N. J. 08540, U. S. A, 1984. 279.
[30]      D. R. Gaskell, Introduction to The thermodinamics of Materials, Fourth Edition, New York- London, 2003.
[31] م. رنجبری، م. آزادبه، ع.ص. نمینی، "نقش تقویت کننده ی برون جای B4C و درون جای TiC و TiBw در تحولات ساختاری آلیاژ مخلوط پودری Ti-10Mo " فصل نامه علمی-پژوهشی مواد نوین، دوره 13، شماره 50، بهمن 1401، صفحه 19-32.