یک روش نوین برای سنتزِ سبز نانوذرات Fe3O4 با استفاده از عصاره گیاه آلیاسه و بررسی خواص آن‌ها

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه نانوپزشکی، دانشکده علوم و فناوری نوین پزشکی، دانشگاه علوم پزشکی شیراز، شیراز، ایران

2 استادیار، مرکز تحقیقات ترومای شهید رجایی(امتیاز)شیراز،دانشگاه علوم پزشکی شیراز

3 استادیار، گروه اورژانس، دانشکده پزشکی، بیمارستان آموزشی نمازی، دانشگاه علوم پزشکی شیراز، شیراز، ایران

4 دانشجوی پسادکتری، گروه نانوپزشکی، دانشکده علوم و فناوری نوین پزشکی، دانشگاه علوم پزشکی شیراز، شیراز، ایران

5 دانشجوی کارشناسی ارشد، گروه نانوپزشکی، دانشکده علوم و فناوری نوین پزشکی، دانشگاه علوم پزشکی شیراز، شیراز، ایران

6 استادیار، دانشکده مهندسی و علم مواد، دانشگاه صنعتی شیراز، شیراز، ایران

7 استادیار، مرکز تحقیقات غدد و متابولیسم شیراز، دانشگاه علوم پزشکی شیراز، شیراز، ایران

8 استادیار، گروه مهندسی بافت، دانشکده علوم و فناوری نوین پزشکی، دانشگاه علوم پزشکی شیراز، شیراز، ایران

چکیده

چکیده
مقدمه: در سال‌های اخیر، نانوذرات مغناطیسی مبتنی بر اکسید آهن برای انواع کاربردهای زیست‌محیطی و پزشکی، از جمله خالص‌سازی و جداسازی آلودگی‌های دارویی، رنگی و فلزات سنگین و همچنین سیستم‌های تحویل دارو و برچسب‌گذاری، به‌طور گسترده مورد استفاده قرار گرفته‌اند. با توجه به این که مگنتیت (Fe3O4) دارای ویژگی‌های مغناطیسی و الکتریکی برتری است، در میان بسیاری از مواد نانوساختار اکسید آهن بیشترین علاقه را به خود جلب کرده است.
روش: در این پژوهش، نانوذرات مگنتیت (Fe3O4) با استفاده از یک فرآیند سبز با موفقیت سنتز شد. این روش، روشی ساده، سریع، مقرون به صرفه و زیست‌سازگار است. عصاره گیاه آلیوم هوشیدریا (آلیاسه) به‌ عنوان یک عامل تثبیت کننده و کاهنده در این فرایند استفاده شد. برای مشخصه یابی و بررسی خواص موروفولوژی نانوذرات Fe3O4 از روش­هایی همچون مغناطیس سنج نمونه ارتعاشی (VSM)، پراش پرتو ایکس (XRD)، تبدیل فوریه مادون‌قرمز (FTIR)، طیف‌سنجی پرتو ایکس پراکنده انرژی (EDS)، میکروسکوپ الکترونی عبوری (TEM) و میکروسکوپ الکترونی روبشی (SEM) استفاده شد.
یافته ­ها: نتایج آزمون XRD نشان داد که نانوذرات سنتز شده با خلوص بالا و ساختار FCC  است.  نتایج FTIR اتصال گروه عاملی موجود در این گیاه و نانوذرات Fe3O4 را اثبات کرد. همچنین، در آنالیز FTIR ، وجود دو پیک جذبی cm-1 96/559 و  cm-1 57/432 سنتز موفقیت­آمیز نانوذرات Fe3O4 را تایید کرد. تصاویر SEM و TEM نشان داد که نانوذرات Fe3O4 تولید شده عمدتاً به‌شکل کروی بوده و به‌طور متوسط دارای اندازه 73/35 نانومتر است.
نتیجه ­گیری: بنابراین می توان نتیجه گرفت که نانو ذرات سنتز شده می­توانند برای استفاده در نانوپزشکی آینده مناسب باشند. 

کلیدواژه‌ها


عنوان مقاله [English]

A new method for the green synthesis of Fe3O4 nanoparticles using Alliaceae plant extract and investigating their properties

نویسندگان [English]

  • ali mohammad amani 1
  • Kazem jamali 2
  • Ali Jangjou 3
  • Ehsan Vafa 4
  • Milad Abbasi 5
  • Sareh Mosleh Shirazi 6
  • Seyed Reza Kasaei 7
  • Ahmad Vaez 8
1 Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
2 Assistant Professor, Shahid Rajaei Trauma Research Center (Emtiaz) Shiraz, Shiraz University of Medical Sciences
3 Assistant Professor, Department of Emergency, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
4 Postdoctoral student, Department of Nanomedicine, School of Advanced Medical Sciences and Technologies,, Shiraz University of Medical Sciences, Shiraz, Iran
5 Master's student, Department of Nanomedicine, School of Advanced Medical Sciences and Technologies,, Shiraz University of Medical Sciences, Shiraz, Iran
6 Assistant Professor, Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz, Iran
7 Assistant Professor, Shiraz Endocrine and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
8 Assistant Professor, Department of Tissue Engineering, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran Shiraz, Iran
چکیده [English]

Abstract
Introduction: In recent years, iron oxide-based magnetic nanoparticles have been widely used for a variety of environmental and medical applications, including the purification and separation of pharmaceutical, dye, and heavy metal contaminants, as well as drug delivery and labeling systems. Due to the fact that magnetite (Fe3O4) has superior magnetic and electrical properties, iron oxide has attracted the most interest among many nanostructured materials.
Methods: In this research, magnetite nanoparticles (Fe3O4) were successfully synthesized using a green process. This method is simple, fast, cost-effective, and biocompatible. Allium hooshidaryae (Alliaceae) plant extract was used as a stabilizing and reducing agent in this process. Green synthesized nanoparticles were characterized by several structural and physical techniques, like Vibrating Sample Magnetometer (VSM), X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR), Energy Dispersive X-ray Spectroscopy (EDS), Transmission Electron Microscope (TEM) ) and scanning electron microscope (SEM).
Findings: XRD results showed that the synthesized nanoparticles are FCC structure with high purity. FTIR results proved the binding of functional group present in this plant and Fe3O4 nanoparticles. Also, in FTIR analysis, the presence of two absorption peaks of 559.96 cm-1 and 432.57 cm-1 confirmed the successful green synthesis of Fe3O4 nanoparticles. SEM and TEM images showed that the green synthesized Fe3O4 nanoparticles are mostly spherical and have an average size of 35.73 nm. As a result, the synthesized nanoparticles have the potential to have useful benefits in future nanomedicine

کلیدواژه‌ها [English]

  • Magnetite nanoparticles
  • Allium hooshidaryae
  • Green Synthesis
  1. Baig N, Kammakakam I, Falath W. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Materials Advances. 2021;2(6):1821-71. DOI: 10.1039/D0MA00807A.
  2. Azizli MJ, Vafa E, Rezaeeparto K, Parham S, Mokhtary M, Jahankhah Z. Preparation, characterization, and compatibilization of novel rubber nanocomposites for mechanical applications: relationship between electrical properties, morphology, and rheology. Journal of Adhesion Science and Technology. 2023;37(19):2754-78. DOI: 10.1080/01694243.2023.2166613.
  3. Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. Journal of Nanobiotechnology. 2022;20(1):262. DOI: 10.1186/s12951-022-01477-8.
  4. Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arabian journal of chemistry. 2019;12(7):908-31. DOI: 10.1016/j.arabjc.2017.05.011.
  5. Coetzee D, Venkataraman M, Militky J, Petru M. Influence of nanoparticles on thermal and electrical conductivity of composites. Polymers. 2020;12(4):742. DOI: 10.3390/polym12040742
  6. Rostamizadeh S, Abdollahi F, Shadjou N, Amani AM. MCM-41-SO 3 H: a novel reusable nanocatalyst for synthesis of amidoalkyl naphthols under solvent-free conditions. Monatshefte für Chemie-Chemical Monthly. 2013;144:1191-6. DOI: 10.1007/s00706-013-0936-4
  7. Rostamizadeh S, Aryan R, Ghaieni HR, Amani AM. An efficient one‐pot procedure for the preparation of 1, 3, 4‐thiadiazoles in ionic liquid [bmim] BF4 as dual solvent and catalyst. Heteroatom Chemistry: An International Journal of Main Group Elements. 2008;19(3):320-4. DOI: 10.1002/hc.20432
  8. Habibi A, Tarameshloo Z, Rostamizadeh S, M Amani A. Efficient synthesis of 3-Aminoimidazo [1, 2-a] pyridines using Silica-Supported perchloric acid (HClO4-SiO2) as a novel heterogenous catalyst. Letters in Organic Chemistry. 2012;9(3):155-9. DOI: 10.2174/157017812800167439
  9. Rostamizadeh S, Aryan R, Ghaieni HR, Amani AM. Solvent‐free chemoselective synthesis of some novel substituted 2‐arylbenzimidazoles using amino acid‐based prolinium nitrate ionic liquid as catalyst. Journal of Heterocyclic Chemistry. 2009;46(1):74-8. DOI: 10.1002/jhet.35.
  10. Soares S, Sousa J, Pais A, Vitorino C. Nanomedicine: principles, properties, and regulatory issues. Frontiers in chemistry. 2018:360. DOI: 10.3389/fchem.2018.00360
  11. Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nature reviews drug discovery. 2021;20(2):101-24. DOI: 10.1038/s41573-020-0090-8.
  12. Hoseinzadeh A, Ghoddusi Johari H, Anbardar MH, Tayebi L, Vafa E, Abbasi M, et al. Effective treatment of intractable diseases using nanoparticles to interfere with vascular supply and angiogenic process. European Journal of Medical Research. 2022;27(1):232. DOI: 10.1186/s40001-022-00833-6.
  13. Pandey P. Role of nanotechnology in electronics: A review of recent developments and patents. Recent Patents on Nanotechnology. 2022;16(1):45-66. DOI: 10.2174/1872210515666210120114504.
  14. Anastasiadis SH, Chrissopoulou K, Stratakis E, Kavatzikidou P, Kaklamani G, Ranella A. How the physicochemical properties of manufactured nanomaterials affect their performance in dispersion and their applications in biomedicine: A review. Nanomaterials. 2022;12(3):552. DOI: 10.3390/nano12030552.
  15. Gulumian M, Andraos C, Afantitis A, Puzyn T, Coville NJ. Importance of surface topography in both biological activity and catalysis of nanomaterials: can catalysis by design guide safe by design? International Journal of Molecular Sciences. 2021;22(15):8347. DOI: 10.3390/ijms22158347.
  16. Mosleh-Shirazi S, Akhlaghi F. Tribological behavior of Al/SiC and Al/SiC/2 vol% Gr nanocomposites containing different amounts of nano SiC particles. Materials Research Express. 2019;6(6):065039. DOI: 10.1088/2053-1591/ab0929.
  17. Amani AM, Tayebi L, Abbasi M, Vaez A, Kamyab H, Chelliapan S, et al. The Need for Smart Materials in an Expanding Smart World: MXene-Based Wearable Electronics and Their Advantageous Applications. ACS Omega. 2023. DOI: 10.1021/acsomega.3c06590.
  18. Mosleh-Shirazi S, Janghorban K, Design. Investigation of physical and chemical properties of polypropylene hybrid nanocomposites. Materials & Design. 2012;34:474-8. DOI: 10.1016/j.matdes.2011.08.027.
  19. Sanità G, Carrese B, Lamberti A. Nanoparticle surface functionalization: how to improve biocompatibility and cellular internalization. Frontiers in molecular biosciences. 2020;7:587012. DOI: 10.3389/fmolb.2020.587012.
  20. Rostamizadeh S, Ghaieni H, Aryan R, Amani A. Zinc chloride catalyzed synthesis of 5-substituted 1H-tetrazoles under solvent free condition. Chinese Chemical Letters. 2009;20(11):1311-4. DOI: 10.1016/j.cclet.2009.06.020.
  21. Rostamizadeh S, Ghaieni HR, Aryan R, Amani AM. Clean one-pot synthesis of 1, 2, 4-oxadiazoles under solvent-free conditions using microwave irradiation and potassium fluoride as catalyst and solid support. Tetrahedron. 2010;66(2):494-7. DOI: 10.1016/j.tet.2009.11.063.
  22. Rostamizadeh S, Amani AM, Aryan R, Ghaieni HR, Norouzi L. Very fast and efficient synthesis of some novel substituted 2-arylbenzimidazoles in water using ZrOCl 2· nH 2 O on montmorillonite K10 as catalyst. Monatshefte für Chemie-Chemical Monthly. 2009;140:547-52. DOI: 10.1007/s00706-008-0087-1.
  23. Rostamizadeh S, Shadjou N, Amani AM, Balalaie S. Silica supported sodium hydrogen sulfate (NaHSO4/SiO2): A mild and efficient reusable catalyst for the synthesis of aryl-14-H-dibenzo [a, j] xanthenes under solvent-free conditions. Chinese Chemical Letters. 2008;19(10):1151-5. DOI: 10.1016/j.cclet.2008.07.026.
  24. Rostamizadeh S, Aryan R, Ghaieni HR, Amani AM. Aqueous NaHSO 4 catalyzed regioselective and versatile synthesis of 2-thiazolamines. Monatshefte für Chemie-Chemical Monthly. 2008;139:1241-5. DOI: 10.1007/s00706-008-0906-4.
  25. Mirzaei A, Oum W, Ham H, Kwon YJ, Mosleh-Shirazi S, Shin KY, et al. Catalyst and substrate-free synthesis of graphene nanosheets by unzipping C60 fullerene clusters using a pulse current method. Materials Science in Semiconductor Processing. 2022;149:106831. DOI: 10.1016/j.mssp.2022.106831.
  26. Mousavi SM, Hashemi SA, Arjmand O, Amani AM, Babapoor A, Fateh M, et al. Erythrosine Adsorption from Aqueous Solution via Decorated Graphene Oxide with Magnetic Iron Oxide Nano Particles: Kinetic and Equilibrium Studies. Acta Chimica Slovenica. 2018;65(4). DOI: 10.17344/acsi.2018.4537.
  27. Mahdavinia GH, Rostamizadeh S, Amani AM, Sepehrian H. Fast and efficient method for the synthesis of 2-arylbenzimidazoles using MCM-41-SO3H. 2012. DOI: 10.1515/hc-2011-0056.
  28. Rostamizadeh S, Amani AM, Mahdavinia GH, Shadjou N. Silica supported ammonium dihydrogen phosphate (NH4H2PO4/SiO2): A mild, reusable and highly efficient heterogeneous catalyst for the synthesis of 14-aryl-14-H-dibenzo [a, j] xanthenes. Chinese Chemical Letters. 2009;20(7):779-83. DOI: 10.1016/j.cclet.2009.03.016.
  29. Mousavi SM, Hashemi SA, Amani AM, Saed H, Jahandideh S, Mojoudi F. Polyethylene terephthalate/acryl butadiene styrene copolymer incorporated with oak shell, potassium sorbate and egg shell nanoparticles for food packaging applications: control of bacteria growth, physical and mechanical properties. Polymers from Renewable Resources. 2017;8(4):177-96. DOI: 10.1177/204124791700800403.
  30. Amani A. Synthesis and biological activity of piperazine derivatives of phenothiazine. Drug research. 2014:5-8. DOI: 10.1055/s-0033-1364001.
  31. Akhlaghi F, Mosleh-Shirazi S. Effect of SiC nanoparticles content and milling time on the characteristics of Al/SiC nanocomposite powders produced via mechanical milling. Advanced Materials Research. 2014;829:505-9. DOI: 10.4028/ www.scientific.net/ AMR.829.505.
  32. Amani AM, Danaie P, Vaez A, Gholizadeh R, Firuzyar T, Dehghani F, et al. Rutin precursor for the synthesis of superparamagnetic ZnFe2O4 nanoparticles: Experimental and density functional theory. Applied Physics A. 2022;128(8):696. DOI: 10.1007/s00339-022-05763-y.
  33. Dehghani F, Shahmoradi S, Naghizadeh M, Firuzyar T, Vaez A, Kasaee SR, et al. Magnetic graphite-ODA@ CoFe2O4: attempting to produce and characterize the development of an innovative nanocomposite to investigate its antimicrobial properties. Applied Physics A. 2022;128(3):250. DOI: 10.1007/s00339-022-05387-2.
  34. Mosleh-Shirazi S, Kasaee SR, Dehghani F, Kamyab H, Kirpichnikova I, Chelliapan S, et al. Investigation through the anticancer properties of green synthesized spinel ferrite nanoparticles in present and absent of laser photothermal effect. Ceramics International. 2023;49(7):11293-301. DOI: 10.1016/j.ceramint.2022.11.329.
  35. Dehghani F, Mosleh-Shirazi S, Shafiee M, Kasaee SR, Amani AM. Antiviral and antioxidant properties of green synthesized gold nanoparticles using Glaucium flavum leaf extract. Applied Nanoscience. 2023;13(6):4395-405. DOI: 10.1007/s13204-022-02705-1.
  36. Sadeghipour Y, Alipour MH, Ghaderi Jafarbeigloo HR, Salahvarzi A, Mirzaii M, Amani AM, et al. Evaluation antibacterial activity of biosynthesized silver nanoparticles by using extract of Euphorbia Pseudocactus Berger (Euphorbiaceae). Nanomedicine Research Journal. 2020;5(3):265-75. DOI: 10.22034/NMRJ.2020.03.007.
  37. Mahdavinia GH, Amani A, Sepehrian H. MCM-41-SO 3 H as a Highly Efficient Sulfonic Acid Nanoreactor for the Rapid and Green Synthesis of Some Novel Highly Substituted Imidazoles under Solvent-Free Condition. Chinese Journal of Chemistry. 2012;30:703. DOI: 10.1002/cjoc.201280008.
  38. Shabani L, Kasaee SR, Chelliapan S, Abbasi M, Khajehzadeh H, Dehghani FS, et al. An investigation into green synthesis of Ru template gold nanoparticles and the in vitro photothermal effect on the MCF-7 human breast cancer cell line. Applied Physics A. 2023;129(8):564. DOI: 10.1007/s00339-023-06832-6.
  39. Shaker Ardakani L, Alimardani V, Tamaddon AM, Amani AM, Taghizadeh S. Green synthesis of iron-based nanoparticles using Chlorophytum comosum leaf extract: methyl orange dye degradation and antimicrobial properties. Heliyon. 2021;7(2):e06159. DOI: 10.1016/j.heliyon.2021.e06159.
  40. Gheisari F, Kasaee SR, Mohamadian P, Chelliapan S, Gholizadeh R, Zareshahrabadi Z, et al. Bromelain-loaded silver nanoparticles: Formulation, characterization and biological activity. Inorganic Chemistry Communications. 2024;161:112006. DOI: 10.1016/j.inoche.2023.112006.
  41. Amani AM, Tayebi L, Vafa E, Abbasi M, Vaez A, Kamyab H, et al. On the horizon of greener pathways to travel into a greener future portal: Green MXenes, environment-friendly synthesis, and their innovative applications. Journal of Cleaner Production. 2024;436:140606. DOI: 10.1016/j.jclepro.2024.140606.
  42. Hosseinzadeh A, Zamani A, Johari HG, Vaez A, Golchin A, Tayebi L, et al. Moving beyond nanotechnology to uncover a glimmer of hope in diabetes medicine: Effective nanoparticle‐based therapeutic strategies for the management and treatment of diabetic foot ulcers. Cell Biochemistry and Function. 2023. DOI: 10.1002/cbf.3816.
  43. Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ. Green Synthesis of Metallic Nanoparticles via Biological Entities. Materials (Basel). 2015;8(11):7278-308. DOI: 10.3390/ma8115377.
  44. Ledwith DM, Whelan AM, Kelly JM. A rapid, straight-forward method for controlling the morphology of stable silver nanoparticles. Journal of Materials Chemistry. 2007;17(23):2459-64. DOI: 10.1039/B702141K.
  45. Peralta-Videa JR, Huang Y, Parsons JG, Zhao L, Lopez-Moreno L, Hernandez-Viezcas JA, et al. Plant-based green synthesis of metallic nanoparticles: scientific curiosity or a realistic alternative to chemical synthesis? Nanotechnology for Environmental Engineering. 2016;1(1):4. DOI: 10.1007/s41204-016-0004-5.
  46. Kuppusamy P, Yusoff MM, Maniam GP, Govindan N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications - An updated report. Saudi Pharm J. 2016;24(4):473-84. DOI: 10.1016/j.jsps.2014.11.013.
  47. Marslin G, Siram K, Maqbool Q, Selvakesavan RK, Kruszka D, Kachlicki P, et al. Secondary Metabolites in the Green Synthesis of Metallic Nanoparticles. Materials (Basel). 2018;11(6). DOI: 10.3390/ma11060940.
  48. Vafa E, Azizli MJ, Tayebi L, Amani AM, Kamyab H. Integrating bioactive glass with compatibilizer: A novel approach for hard tissue regeneration using PXDDA-co-PLA/PLCL/PGLA nanocomposites. Materials Chemistry and Physics. 2024;316:129070. DOI: 10.1016/j.matchemphys.2024.129070.
  49. Mashayekhi S, Zarre S, Fritsch R, Attar F. A new species of Allium subgen.Melanocrommyum sect. Compactoprason (Alliaceae) from Iran. Feddes Repertorium. 2005;116:191-4. DOI: 10.1002/fedr.200411065.
  50. Snoussi M, Noumi E, Hajlaoui H, Bouslama L, Hamdi A, Saeed M, et al. Phytochemical Profiling of Allium subhirsutum L. Aqueous Extract with Antioxidant, Antimicrobial, Antibiofilm, and Anti-Quorum Sensing Properties: In Vitro and In Silico Studies. Plants (Basel). 2022;11(4). DOI: 10.3390/plants11040495.
  51. Lanzotti V. The analysis of onion and garlic. J Chromatogr A. 2006;1112(1-2):3-22. DOI: 10.1016/j.chroma.2005.12.016.
  52. Vickers NJ. Animal Communication: When I'm Calling You, Will You Answer Too? Curr Biol. 2017;27(14):R713-r5. DOI: 10.1016/j.cub.2017.05.064.
  53. Vafa E, Bazargan-Lari R, Bahrololoom ME. Synthesis of 45S5 bioactive glass-ceramic using the sol-gel method, catalyzed by low concentration acetic acid extracted from homemade vinegar. Journal of Materials Research and Technology. 2021;10:1427-36. DOI: 10.1016/j.jmrt.2020.12.093.
  54. Thomson M, Ali M. Garlic [Allium sativum]: a review of its potential use as an anti-cancer agent. Curr Cancer Drug Targets. 2003;3(1):67-81. DOI: 10.2174/1568009033333736.
  55. Lira S, Almeida R, Almeida FR, Oliveira F, Duarte J. Preliminary Studies on the Analgesic Properties of the Ethanol Extract of Combretum leprosum. Pharmaceutical Biology. 2008;40:213-5. DOI: 10.1076/phbi.40.3.213.5837.
  56. Azizi A. Green Synthesis of Fe3O4 Nanoparticles and Its Application in Preparation of Fe3O4/Cellulose Magnetic Nanocomposite: A Suitable Proposal for Drug Delivery Systems. Journal of Inorganic and Organometallic Polymers and Materials. 2020;30. DOI: 10.1007/s10904-020-01500-1.
  57. Latha N, C.Ramesh, Kumar KT, Ragunathan V. Green Synthesis of Cr2O3 Nanoparticles Using Tridax procumbens Leaf Extract and its Antibacterial Activity on Escherichia coli. Current Nanoscience. 2012;8:603-7. DOI: 10.2174/157341312801784366.
  58. Makarov VV, Makarova SS, Love AJ, Sinitsyna OV, Dudnik AO, Yaminsky IV, et al. Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of Hordeum vulgare and Rumex acetosa plants. Langmuir. 2014;30(20):5982-8. DOI: 10.1021/la5011924.
  59. Niraimathee VA, Subha V, Ramaswami Sachidanandan ER, Renganathan S. Green synthesis of iron oxide nanoparticles from Mimosa pudica root extract. International Journal of Environment and Sustainable Development. 2016;15:227. DOI: 10.1504/IJESD.2016.077370.
  60. Sajjadi M, Nasrollahzadeh M, Sajadi SM. Green synthesis of Ag/Fe 3 O 4 nanocomposite using Euphorbia peplus Linn leaf extract and evaluation of its catalytic activity. Journal of Colloid and Interface Science. 2017;497:1-13. DOI: 10.1016/j.jcis.2017.02.037.
  61. Izadiyan Z, Shameli K, Miyake M, Hara H, Mohamad SEB, Kalantari K, et al. Cytotoxicity assay of plant-mediated synthesized iron oxide nanoparticles using Juglans regia green husk extract. Arabian Journal of Chemistry. 2020;13(1):2011-23. DOI: 10.1016/j.arabjc.2018.02.019
  62. Gheisari F, Reza Kasaee S, Mohamadian P, Chelliapan S, Gholizadeh R, Zareshahrabadi Z, et al. Bromelain-loaded silver nanoparticles: Formulation, characterization and biological activity. Inorganic Chemistry Communications. 2024;161:112006. DOI: 10.1016/j.inoche.2023.112006.
  63. Eghtedari M, Liopo AV, Copland JA, Oraevsky AA, Motamedi M. Engineering of Hetero-Functional Gold Nanorods for the in vivo Molecular Targeting of Breast Cancer Cells. Nano Letters. 2009;9(1):287-91. DOI: 10.1021/nl802915q.
  64. Awwad A, Salem N. A Green and Facile Approach for Synthesis of Magnetite Nanoparticles. Journal of Nanoscience and Nanotechnology. 2012;2:208-13. DOI: 10.5923/j.nn.20120206.09.
  65. Yadav M. Study on thermal and mechanical properties of cellulose/iron oxide bionanocomposites film. Composites Communications. 2018;10:1-5. DOI: 10.1016/j.coco.2018.04.010.
  66. Demir A, Topkaya R, Baykal A. Green synthesis of superparamagnetic Fe3O4 nanoparticles with maltose: Its magnetic investigation. Polyhedron. 2013;65:282-7. DOI: 10.1016/j.poly.2013.08.041.
  67. Yuvakkumar R, Hong SI. Green Synthesis of Spinel Magnetite Iron Oxide Nanoparticles. Advanced Materials Research. 2014;1051:39-42. DOI: 10.4028/www.scientific.net/AMR.1051.39.
  68. Yusefi M, Shameli K, Su Yee O, Teow S-Y, Hedayatnasab Z, Jahangirian H, et al. Green synthesis of Fe3O4 nanoparticles stabilized by a Garcinia mangostana fruit peel extract for hyperthermia and anticancer activities. International journal of nanomedicine. 2021:2515-32. DOI: 10.2147/IJN.S284134.