داربست کامپوزیتی پلی‌کاپرولاکتون- هیدروکسی آپاتیت: بررسی تاثیر درصد ذرات هیدروکسی آپاتیت و مقایسه ذرات با سایز نانومتری و میکرومتری و اثر آن‌ها بر خواص مکانیکی و زیست‌تخریب‌پذیری داربست

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشدمهندسی مواد، دانشگاه یزد.

2 دانشجوی دکترای مهندسی مواد، دانشگاه صنعتی شریف.

3 عضو هیئت علمی دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان.

چکیده

در این پژوهش، تاثیر اندازه ذرات هیدروکسی آپاتیت بر خواص مکانیکی و زیست­ تخریب پذیری داربست کامپوزیتی    پلی­کاپرولاکتون/هیدروکسی آپاتیت انجام شد. داربست­های کامپوزیتی با استفاده از دو نوع پودر هیدروکسی آپاتیت نانومتری (تهیه شده به روش سل - ژل) و میکرومتری تجاری،به روش لیچینگ ذره­ای تهیه شدند. سه مقدار متفاوت برابر 5، 10 و 15 درصد وزنی از پودر هیدروکسی آپاتیت نانومتری و میکرومتری برای تهیه داربست به پلی­کاپرولاکتون اضافه شد. شناسایی ساختار فازی با روش پراش پرتو ایکس (XRD)، مطالعه ریخت شناسی با میکروسکوپ الکترونی روبشی (SEM)، شناسایی گروههای عاملی با طیف­سنجی فروسرخ با تبدیل فوریه (FTIR) انجام گرفت. هم­چنین، رفتار زیست­تخریب­پذیری داربست با قرار دادن نمونه­ها به مدت 30 روز در محلول فسفات بافر سالین (PBS) و اندازه­گیری تغییرات وزن و pHآن­ها بررسی شد. خواص مکانیکی داربست­ها نیز با استفاده از دستگاه آزمون استحکام فشاری مورد ارزیابی قرار گرفت. نتایج نشان دادند که داربست­های تهیه شده با پودر نانومتری دارای استحکام فشاری بیش­تری در مقایسه با داربست­های تهیه شده با پودر میکرومتری بود. با افزایش درصد تقویت­کننده بیش از 10 درصد وزنی، استحکام فشاری کاهش یافت. با افزایش مقدار هیدروکسی آپاتیت و گذشت زمان، مقدار تخریب داربست ها افزایش یافت و نرخ تخرب پذیری داربست­های تهیه شده با پودر نانومتری بهتر از داربست­های تهیه شده با پودر میکرومتری بود

کلیدواژه‌ها


1- M.H. Fathi, and A. Hanifi, "Evaluation and Characterization of Nanostructure Hydroxyapatite Powder Prepared by Simple Sol–Gel Method", Materials Letters. 61, pp: 3978–3983, 2007
2- M.H. Fathi, A. Hanifi, and V. Mortazavi, “Preparation and Bioactivity Evaluation of Bone-Like Hydroxyapatite Nanopowder”, Journal of Materials Processing Technology. 202, pp: 536–542, 2008.
3- W. Suchanek, M. Yoshimura, and J. Mater. Res. 13 (1998) 94–117.
4- M. Mazrooei., M. Sebdani,and M.H.Fathi., “Novelhydroxyapatite–Forsterite–Bioglass Nanocomposite Coatings with Improved Mechanical Properties” Journal of Alloys and Compounds, Volume 509, Issue 5, 3 February 2011, Pages 2273-2276.
5- N. Johari, M.H. Fathi, M.A. Golozar, "Fabrication Characterization and Evaluation of the Mechanical Properties of Poly (E-Caprolactone)/Nano-Fluoridated Hydroxyapatite Scaffoldfor Bone Tissue Engineering", Composites: Part B. 43, pp: 1671–1675, 2012.
6- ناصری، ا.، حافظی، ف.، "طراحی و ساخت نانوکامپوزیت های شیشه ای زیست تخریب پذیر با قابلیت کاربری در مهندسی بافت استخوان"، مجله علمی پژوهشی مواد نوین، دوره 4، شماره 14، صفحه 11-30، زمستان 1392.
7- E. Ghassemieh, “Morphology and Compression Behavior of Biodegradable Scaffolds Produced by the Sintering Process”, J Eng Med. 222, pp:1247–1262, 2008.
8- Soamasundran, P., "Zeta Potantial Of Apatite In Aqueous Solution And Its Change During Equilibrium", J. Colloid. Interface. Sci. 27, pp: 659-666, 1968.
9- R. Cristescu, A. Doraiswamy, G. Socol, S. Grigorescu, E. Axente, and D. Mihaiescu,  “Polycaprolactone Biopolymer Thin Films Obtained by Matrix Assisted Pulsed Laser evaporation”, Appl Surf Sci. 253, pp:6476–6479, 2007.
10- F.Yang, S.K. Both, and X. Yang, , Walboomers, X.F., Jansen, J.A., “Development of an Electrospun Nano-Apatite/PCL Composite Membrane for GTR/GBR Application”, Acta Biomater. 5,pp: 3295–3304, 2009.
11- M.H. Fathi, and E. Mohammadi Zahrani, “Fabrication and Characterization Fluoridated hydroxyapatite Nanopowders Via Mechanical Alloying”, J Alloys Compd. pp: 475:408–414, 2009.
12- M. Diba, M. Kharaziha, M.H. Fathi, and A. Samadikuchaksaraei, "Preparation and Characterization of Polycaprolactone /Forsterite Nanocomposite Porous Scaffolds Designed for Bbone Tissue Regeneration", Composites Science and Technology, Vol. 72, Pages 716-723, 2012.
13- Y.Ung, S.S. Kim, H.K. Young, S.H. Kim, B.S. Kim, and S. Kim, “A poly (Lactic Acid)/ Calcium Metaphosphate Composite for Bone Tissue Engineering”, Biomater.26, 6314–6322, 2005.
14- K. Rezwana, Q.Z. Chena, J.J. Blakera, and A.R. Boccaccini, , “Biodegradable and Bioactive Porous Polymer/Inorganic Composite scaffolds for Bone Tissue Engineering”, Biomater.27,pp:3413–3431, 2006.
15- Y. Lei, B. Rai, , K. H. H.o, , and S. H. Teoh, ,” In Vitro Degradation of Novel Bioactive Polycaprolactone-20% Tricalcium Phosphate Composit Scaffolds for Bone Engineering”, Mater. Sci. Engng C, Biomim.Supramol. Syst. 27, pp: 293–298, 2007.
16- A. Yeo, B. Rai, E. Sju, J.J. Cheong, and Teoh SH. The Degradation Profile of Novel, Bioresorbable PCL-TCP Scaffolds: An in Vitro and in Vivo Study”, J Biomed Mater Res A 84, pp:208-218, 2008.