بررسی امکان سنتز نانو کاربید سیلیسیوم با استفاده از زئولیت طبیعی، ساکاروز و کربن مزوحفره CMK-1 تحت گاز آرگون توسط فرآیند منیزیوترمال

نویسندگان

گروه مهندسی مواد، دانشگاه آزاد اسلامی واحد شهرضا

چکیده

در پژوهش حاضر، سنتز SiC نانو ساختار از پیش سازه زئولیت طبیعی(کلینوپتیلولیت) توسط فرآیند منیزیوترمال و در حضور کربن مزوحفره با سطح ویژه بالا (CMK-1) مورد بررسی قرار گرفته است. در این راستا از  زئولیت طبیعی فرآوری شده(شسته شده و تعویض کاتیونی شده) به همراه ‌ساکاروز و کربن مزوحفره CMK-1  استفاده گردید. نمونه‌ها براساس میزان کربن، نوع کربن و نوع زئولیت طبیعی فرآوری شده در دمای  700-750  ̊ c  به همراه منیزیم و با نرخ گرمایش5̊c/min و زمان نگهداری ماکزیمم 3 ساعت تحت عملیات پخت جهت تشکیل و بررسی نانو ساختار SiC قرار گرفتند.
       از زئولیت طبیعی(کلینوپتیلولیت) آنالیزهای XRD،  XRF و از  نمونه کربن مزوحفره آنالیزهای XRD ، BETو SEM/ EDX  صورت پذیرفت و آنالیزهای XRDو SEM/ EDX ‌از نمونه‌هایی که با استفاده از زئولیت شسته شده و تعویض کاتیونی شده‌ایی که تحت عملیات پخت نهایی قرار گرفته بودند، صورت پذیرفت. نتایج بررسی‌های XRD نشان داد که تغییر در میزان کربن مزوحفره عامل اصلی در سنتز با خلوص بالا کاربید سیلیسیوم است و هم‌چنین نوع فرآوری پیش‌سازه زئولیت نقش اساسی در مقدار SiC حاصله ایفا می‌کند. نتایج بررسی‌های ریز ساختاریSEM/TEM ‌ و XRD نشان دهنده نانو ساختار بودن SiC حاصله می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Magnesiothermal synthesis of nanostructured SiC from natural zeolite (clinoptilolite),sacarose and mesoporous carbon CMK-1 under Argon atmospher

نویسندگان [English]

  • B. Hosseini
  • A.A. Nourbakhsh
  • S. M. mirhadi
چکیده [English]

        In the present research , synthesis of  nano structure SiC in presence of high surface area of mesoporous carbon(CMK-1) were investigated. To synthesis SiC ,leached and cation exchanged zeolite were used with sucrose and mesoporous carbon. Samples with carbon ,type of carbon and processed zeolite ,fired at 700-750oc  under argon diffrents of amount atmosphere with 50C/min heating rate and soaking time about 3hrs were prepered.
XRD and XRF analysis were carried out on natural zeolite. To characterize the CMK-1 XRD,SEM/EDX with BET were used. Moreover to characterize ,leached and cation exchanged zeolite SEM/EDS and XRD analysis were used.
XRD results showed that the amount of mesoporous carbon as well as the type of processing of zeolite  had the main role in synthesis of high purrity SiCs. XRD and SEM/TEM studies showed that Nano structure of SiC was produced in the process.

کلیدواژه‌ها [English]

  • Nanostructured silicon carbide
  • Mesoporous carbon
  • Clinoptilolite zeolite
  • Magnesiothermal synthesis
[1]              J.parmentier, J.Patarin, J.Dentzer, C.V. Guterl, “Formation of SiC via carbothermal reduction of a carbon-containing mesoporous MCM-48 silica phase : anew route to producehigh surface area SiC “,Ceramic International,Vol.29,pp 1-7,2002.
[2]               S.Hoon,S.Jun,R.Ryoo,"synthesis of ordered mesoporous carbon molecular sieves cmk-1" Mesoporous Materials,44-45,153-158,(2001)  
[3]            Zh. Liu, W. Shen, W. Bu, H. Chen, Z. Hua, L. Zhang, L. Li, J. Shi, S. Tan, "Low- temperature formation of nanocrystalline β-SiC with high surface area and mesoporosity via reaction of mesoporous carbon and silicon powder", Microporous Mesoporous Mater, Vol.82,  pp. 137–145, 2005.
[4]            Y. Shi, Y. Wan, D. Zhao, "Ordered mesoporous non-oxide materials", Chemical Society Review, Vol. 40, pp. 3854–3878, 2011.
[5]            Y.F. Shi, Y. Meng, D.H. Chen, S.J. Cheng, P. Chen, T.F. Yang, Y. Wan, D.Y. Zhao, "Highly ordered mesoporous silicon carbide ceramics with large surface areas and high stability", Advanced Functional Materials, Vol. 16, pp. 561-567, 2006.
[6]            G.Q. Jin, X.Y. Guo, "Synthesis and characterization of mesoporous silicon carbide", Microporous and Mesoporous Materials, Vol. 60, pp. 207–212, 2003.
[7]            Z.X. Yang, Y.D. Xia, R. Mokaya, "High surface area silicon carbide whiskers and nanotubes nanocast using mesoporous silica", Chemistry of Materials, Vol. 16, pp. 3877-3884, 2004.
[8]            B. Zhao, H. Zhang, H. Tao, Z. Tan, Zh. Jiao, M. Wu, "Low temperature synthesis of mesoporous silicon carbide via magnesiothermic reduction", Materials Letters, Vol. 65, pp. 1552–1555, 2011.
[9]            Y. Shi, F. Zhang, Y.S. Hu, X. Sun, Y. Zhang, H.I. Lee, L.D. Chen, G. Stucky, "Low-temperature pseudomorphic transformation of ordered hierarchical macro-mesoporous SiO2/C nanocomposite to SiC via magnesiothermic reduction", Journal of the American Chemical Society, Vol. 132, pp. 5552–5553, 2010.
[10]            م.همتیان و همکاران،" بررسی سنتز سیلیکون کاربید نانوسایز با استفاده از پیش سازه نانو کامپوزیت  اکریل آمید وSBA-15"، دانشکده مواد، دانشگاه نجف آباد، پایان نامه کارشناسی ارشد،زمستان 1390.
[11]            ب.شکرگزار، ا.ا.نوربخش، ر.ابراهیمی،" سنتز دما پایین SiC از پیش سازه نانو کامپوزیت زئولیت ZSM-5 / فورفوریل الکل با استفاده از فرآیند احیای منیزیوترمال"،نهمین کنگره سرامیک ایران،1392.
[12]            R. J. Kalbasi and N. Mosaddegh, "Synthesis and characterization of poly(4-vinylpyridine)/MCM-48 catalyst for one-pot synthesis of substituted 4H-chromenes," Catalysis Communications, vol. 12, pp. 1231–1237, 2011.
[13]            R. J. Kalbasia, N. Mosaddegha, and A. Abbaspourrad, "A novel catalyst containing palladium nanoparticles supported on poly(2-hydroxyethyl methacrylate)/CMK-1: Synthesis, characterization and comparison with mesoporous silica nanocomposite," Applied Catalysis A: General, vol. 423– 424, pp. 78– 90, 2012
[14]            Z.Saeedifar, A.A.Nourbakhsh,” Low-temperature Magnesiothermic Synthesis of Mesoporous Silicon Carbide from an MCM-48/Polyacrylamide Nanocomposite Precursor”, J. Mater. Sci. Technol, 1-6, 2013
[15]            N. Vlachy, B. jagoda-Cwiklik, R. Vacha, D. Touraud, P. Jungwirth, W. Kunz,” Hofmeister series and specific interactions of charged headgroups with aqueous ions”, Advances in Colloid and Interface Science, Vol.146, pp 42-47,  2009.
[16]             S. Niyomwas, "The effect of carbon mole ratio on the fabrication of silicon carbide from SiO2-C-Mg system via self-propagating high temperature synthesis", Songklanakarin Journal of Science and Technology, Vol. 30, pp. 227-231, 2008.