بررسی مسیر واکنشی تشکیل پوشش تدریجی SiC بر گرافیت با روش سمانتاسیون بسته‌ای و تأثیر نوع مواد اولیه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای مواد، مجتمع دانشگاهی مواد و فناوری‌های ساخت، دانشگاه صنعتی مالک اشتر، لویزان، تهران

2 استاد تمام، مجتمع دانشگاهی مواد و فناوری‌های ساخت، دانشگاه صنعتی مالک اشتر، لویزان، تهران

چکیده

با توجه به آن‌که مواد کربنی از جمله گرافیت به طور گسترده در ساختارهای دمای بالا مورد استفاده قرار گرفته‌اند؛ اما مشکل اصلی آن‌ها، شروع اکسیداسیون از دمای حدود °C400 در محیط اکسیدی می‌باشد، بهترین روش برای تقویت مقاومت به اکسیداسیون گرافیت، استفاده از کاربید سیلیسیم با ساختار تدریجی است که به دلیل پایداری حرارتی مناسب و تطابق فیزیکی، شیمیایی و ضریب انبساط حرارتی مناسب با زیرلایه کربنی کاربرد گسترده‌ای یافته است. در پژوهش حاضر به دلیل مزایایی نظیر هزینه کم‌تر، سهولت بکارگیری و قابلیت صنعتی‌سازی، روش سمانتاسیون بسته‌ای در دمای °C1600 برای تشکیل پوشش SiC تدریجی بکار گرفته شد. آنالیز پراش اشعه ایکس (XRD) و تصاویر میکروسکوپ الکترونی روبشی (SEM) نشان می‌دهد که پوشش حاصل به صورت تدریجی تشکیل یافته و شامل فاز α-SiC و β-SiC با تراکم مناسب می‌باشد. مکانیزم تشکیل پوشش SiC بر گرافیت با آنالیز ترمودینامیکی و محاسبات تعادل شیمیایی حاصل از نرم‌افزار HSC Chemistry 6.0 تشریح می‌شود. مکانیزم مسیر واکنشی نشان می‌دهد، در مراحل ابتدایی واکنش، فازهای گازی SiO و CO طی واکنش Al2O3 با Si و C تشکیل شده و دو واکنش‌ Si+CàSiC و SiO(g)+2CàSiC+CO(g) به عنوان واکنش‌های اصلی تشکیل پوشش معرفی می‌شوند. نتایج نشان می‌دهد که ترکیب مواد اولیه در روش سمانتاسیون بسته‌ای تأثیر زیادی بر ساختار پوشش کاربیدسیلیسیم ندارد و در نهایت نتایج تجربی، نتایج حاصل از شبیه‌سازی را تأیید می‌کند. در واقع، پژوهش حاضر روشی را برای تحلیل و شبیه‌سازی واکنش‌های سمانتاسیون بسته‌ای با نرم‌افزار ترمودینامیکی HSC Chemistry  ارائه می‌دهد و در نهایت نتایج حاصل از شبیه‌سازی با نتایج تجربی تأیید شد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of SiC graded coating formation mechanism on graphite by pack cemetation process and influenece of types of raw material

نویسندگان [English]

  • J Pourasad 1
  • N Ehsani 2
  • Sayed A Khalifesoltani 1
چکیده [English]

structural materials. On the other hand, graphite can easily react with oxygen even at temperatures as low as 400 °C. The graded silicon carbide (SiC) characterized by compositional gradation over microsopic distances, is considered to be the most promising coating material. In this paper, the pack cementation technique was used to make a graded SiC coating on graphite at 1600°C. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis display that the coating obtained by the pack cementation is a dense structure consisting α-SiC and β-SiC with functionally graded structure. the mechanism of formation of SiC coating on graphite is explained by thermodynamics analysis and chemical equilibrium calculations using HSC Chemistry software 6.0.The reaction-path mechanism indicates in the early stages of the process, SiO and CO gas species can be formed during Al2O3 reaction with Si and C and at two reaction Si+C=SiC and SiO(g)+2C=SiC+CO(g) can be considered as main reactions for SiC coating formation. It was found that the composition of raw materials has not marked effect on the microstructure and property of SiC coating. In fact, this paper proposes a method for the analysis and simulation of pack cementation reactions using HSC Chemistry software package. The results of the simulation are verified by experimental results.

کلیدواژه‌ها [English]

  • Graphite
  • Silicon carbide coating
  • formation mechanism
  • HSC chemistry software
  • pack cemetation
1-                  E. Fitzer, Carbon reinforcements and carbon/carbon composites, 1st ed., pp. 281-294, Springer Science & Business Media, 1998.           
2-                  C.R. Thomas, Essentials of carbon-carbon composites, 1st ed., pp. 204-212, Royal Society of Chemistry, Cambridge, 1993.       
3-                  M.Albano, R. Morles, F. Cioeta and M. Marchetti, “Coating effects on thermal properties of carbon carbon and carbon silicon carbide composites for space thermal protection systems”, Acta Astronautica,Vol. 99, pp. 276-282, 2014.
 4-                  4-J. Kim, W.J. Kim, D. Choi, J. Park and W.S. Ryu, “Design of a C/SiC functionally graded coating for the oxidation protection of C/C composites”, Carbon, Vol. 43, pp. 1749-1757, 2005.
5-                  P. Wang, W. Han, X. Zhang, N. Li, G. Zhao, S. Zhou, (ZrB2–SiC)/SiC oxidation protective coatings for graphite materials, Ceramics International, Vol. 41, pp. 6941-6949, 2015.   
6-                  Y. Zhang, Z. Hu, B. Yang, J. Ren, H. Li, Effect of pre-oxidation on the ablation resistance of ZrB2–SiC coating for SiC-coated carbon/carbon composites, Ceramics International, Vol. 41, pp. 2582-2589, 2015.
7-                  D.C. Rogers, D.M. Shuford and J.I. Mueller, “Formation mechanism of a silicon carbide coating for a reinforced carbon-carbon composite”,  Proceedings 7th National SAMPE Technical Conference”, Albuquerque, USA, pp. 319-337, 1975.       
8-                  T. Morimoto, Y. Ogura, M. Kondo and T. Ueda, “Multilayer coating for carbon-carbon composites”, Carbon, Vol. 33, pp. 51-357, 1995.     
9-                  E. Balomenos, D. Panais, I. Paspaliaris, B. Friedrich, B. Jaroni, A. Steinfled, E. Guglielmini, M. Halmann, M. Epstein, I. Vishnevsky, Carbothermic reduction of alumina: a review of developed processes and novel concepts,  Proceedings of EMC, pp. 729-743, 2011.
10-             م. سعیدی حیدری، ح. بهاروندی، ن. احسانی، تحلیل ترمودینامیکی سینتر بدون فشار نانوکامپوزیت B4C-Si به کمک نرم افزار Factsage، مجله علمی – پژوهشی مواد نوین، دوره 4، شماره 15، بهار 1393، صفحه 90-79.
11-              J.F. Shackelford, W. Alexander, CRC Materials science and engineering handbook, p. 237, CRC press, , 2000.
12-              X.-Y. Yao, H.-J. Li, Y.-L. Zhang, J.-J. Ren, D.-J. Yao, J. Tao, A SiC/ZrB2–SiC/SiC oxidation resistance multilayer coating for carbon/carbon composites, Corrosion Science, Vol. 57, pp. 148-153, 2012.
13-             ح. جعفری, بررسی اثر پوشش‌های چندلایه ایجاد شده توسط پودرهای نانو بر خواص مقاومت به اکسیداسیون قطعات FGM بر پایهC/SiC ، پایان‌نامه کارشناسی ارشد، دانشگاه صنعتی مالک اشتر، تهران، 1390.
14-              Roine, “HSC Chemistry for Windows, version 6.0, chemical reaction and equilibrium software with extensive thermochemical database”, Outokompu Research Oy, Pori, Finland, 2006.J. Ihle, M. Herrmann and J. Adler, “Phase formation in porous liquid phase sintered silicon carbide: Part I: Interaction between Al2O3 and SiC”, Journal of the European Ceramic Society, Vol. 25, pp. 987-995, 2005.      
15-              D.R. Gaskell, Introduction to the Thermodynamics of Materials, 4th ed, pp. 375-377, Taylor and Francis, New York, 2003.
16-              J.F. Huang, H.J. Li, X.R. Zeng, X.B. Xiong and K.Z. Li, “Influence of preparation technology on the microstructure and anti-oxidation property of SiC–Al2O3–mullite multi-coatings for carbon/carbon composites”, Applied surface science, Vol. 252, pp. 4244-42449. 2006.
17-              Q. Zhu, X. Qiu and C. Ma, “Oxidation resistant SiC coating for graphite materials”, Carbon, Vol. 37, pp. 1475-1484, 1999.