1- M.P. Petkov, A. Somoza, G. Santos & K.G. Lynn, “Nucleation and Growth Precipitates in a Ni-Based Superalloy”, Mater. Sci. Forum, 363, pp. 189-191, 2001.
2- J.R. Ho & S.H. Hong, “Effect of elastic interaction energy on coarsening of γ΄ precipitates in a mechanically alloyed ODS Ni-base superalloy”, J. Mater. Sci., 34, pp. 329-336, 1999.
3- A.M. Ges, O Fornaro & H.A. Palacio, “Coarsening behaviour of a Ni-base superalloy under different heat treatment conditions”, Mater. Sci. and Eng. A, 458, pp. 96-100, 2007.
4- S.A. Sajjadi, S. Nategh & R.I.L. Guthrie, “Study of microstructure and mechanical properties of high performance Ni-base superalloy GTD-111”, Mater. Sci. and Eng. A, 325, pp. 484-489, 2002.
5- S.A. Sajjadi & S. Nategh, “A high temperature deformation mechanism map for the high performance Ni-base superalloy GTD-111”, Mater. Sci. and Eng. A, 307, pp. 158-164, 2001.
6-S.A. Sajjadi, S.M. Zebarjad, R.I.L. Guthrie & M. Isac, “Microstructure evolution of high performance Ni- base superalloy GTD-111 with heat treatment parameters”, J. Mater. Proc. Techn., 175, pp. 376-381, 2006.
7- J.W. Eavancho & J.T. Staley, “Kinetics of Precipitation in Aluminum Alloys During Continuous Cooling”, Metal. Trans., 5, pp. 43-47, 1974.
8- A. Zehtab Yazdi, S.A. Sajjadi, S.M. Zebarjad & S.M. Moosavi Nezhad, “Prediction of hardness at different points of Jominy specimen using quench factor analysis method”, J. Mater. Proc. Techn., 199, pp. 124-129, 2008.
9-J.D. Bernardin & I. Mudawar, “Validation of the quench factor technique in predicting hardness in heat treatable aluminum alloys”, International Journal for Heat Mass Transfer, 38, pp. 863-873, 1995.
10- J.T. Staley, R.D. Doherty & A.P. Jaworski, “Improved model to predict properties of aluminum alloy products after continuous cooling”, Metall. Trans., A 24, pp. 2417-2427, 1993.
11- C.E. Bates & G.E. Totten, “Quench severity effects on the as-quenched hardness of selected alloy steels”, Heat Treatment of Metals, 2, pp. 45-48, 1992.
12- C.E. Bates, “Predicting properties and minimizing residual stress in quenched steel parts”, J. Heat Treat., 6, pp. 27-45, 1988.
13- C.R. Brooks, “Principles of heat treatment of plain carbon and low alloy steels”, ASM international, 1996.
14- M. Avrami, “Kinetic of phase change”, J. Chem. Phys., 8, pp. 212-224, 1940).
15- J.W. Cahn, “Transformation kinetics during continuous cooling”, Acta Metallurgica, 4, pp. 572-575, 1956.
16- P.A. Rometsch, M.J. Starink & P.J. Gregson, “Improvements in quench factor modelling”, Mater. Sci. and Eng. A, 339, pp. 225-264, 2003.
17- R.J. Flynn & J.S. Robinson, “The application of advances in quench factor analysis property prediction to the heat treatment of 7010 aluminum alloy”, J. Mater. Proc. Techn., 153, pp. 674-680, 2004.
18- J.T. Staley, “Quench factor analysis of aluminum alloys”, Mater. Sci. and Techn., 3, pp. 923-935, 1987.
19- M. Kianezhad & S.A. Sajjadi, “Improvement of Quench Factor Analysis in Phase and Hardness Prediction of a Quenched Steel”, Metal. and Mater. Trans. A, 5, pp. 2053-2059, 2012.
20- S.A. Sajjadi, H.R. Elahifar & H. Farhangi, “Effects of cooling rate on the microstructure and mechanical properties of the Ni-base superalloy UDIMET 500”, J. Alloys and Comp., 455, pp. 215-220, 2008.
21- C.E. Bates, “Selecting quenchants to maximize tensile properties and minimize distortion in aluminum parts”, J. Heat Treating, 5, pp. 27-40, 1987.