تاثیر متغیرهای فرآیند لیزر پالسی در تولید کامپوزیت سطحی TiC-13H

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد، دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران، تهران، ایران

2 استاد، دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران، تهران، ایران و عضو قطب علمی تکنولوژی آلیاژهای با استحکام بالا

3 دانشیار، دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران، تهران، ایران و عضو قطب علمی تکنولوژی آلیاژهای با استحکام بالا

4 دانشجوی دکتری تخصصی مهندسی مواد، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

    در این پژوهش، کامپوزیت­سازی سطحی فولاد ابزار گرمکار 13H توسط فرآیند لیزر پالسیNd:YAG و ذرات کاربید تیتانیم ((TiC با موفقیت انجام شد. به منظور بررسی تاثیر متغیرهای فرآیند لیزر، کامپوزیت سازی در سرعت روبش    mm/s 2، 7 و 12 و عرض پالس  ms 6، 8 و 10 و فاصله کاری پرتو لیزر mm 4، 5 و 6 انجام شد. مشخصه­یابی سطوح کامپوزیتی به کمک آنالیز پراش پرتو ایکس (XRD)، میکروسکوپ الکترونی روبشی گسیل میدانی (FESEM)، میکروسکوپ الکترونی روبشی (SEM) و طیف­نگاری تفکیک انرژی (EDX) صورت پذیرفت. سختی سطوح کامپوزیت شده و زیرلایه، با استفاده از یک دستگاه ریزسختی­سنج اندازه­گیری شد. با توجه به مزیت­های روش طراحی آزمایش سطح پاسخ (RSM)، نتایج آزمایشگاهی داده شده به نرم­افزار Design Expert پردازش شدند و روابط آماری بین متغیرها و پاسخ­ها استخراج شد. تحلیل نتایج آماری به­دست آمده از روش طراحی آزمایش، بررسی خواص منطقه کامپوزیت شده در محدوده وسیع­تری از متغیرها را فراهم ساخت و همچنین امکان پیش­بینی مقادیر بهینه برای هریک از متغیرهای فرآیند لیزر را فراهم آورد. به منظور دستیابی به ناحیه کامپوزیت­شده با بیش­ترین سختی و ریزساختار بهینه، مقادیر بهینه برای سرعت روبش، فاصله کاری و عرض پالس به ترتیب mm/s 12، mm 94/5 و ms 96/9 گزارش شد که در این حالت ریزسختی منطقه کامپوزیت شده 1606 ویکرز گزارش شد. نتایج حاصل از مشخصه­یابی نمونه­های کامپوزیت شده در شرایط بهینه­ متغیرهای لیزر، ایجاد  منطقه­ای کامپوزیتی بدون ترک و تخلخل، با مشارکت مناسب و توزیع یکنواخت ذرات TiC را نشان داد.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Pulsed Laser Parameters on Surface Compositing of H13-TiC

نویسندگان [English]

  • M Kazemi 1
  • Sh Kheirandish 2
  • H Saghafiyan 3
  • A Dadoo 4
1 Iran University of Science and Technology
3 Iran University of Science and Technology
چکیده [English]

     In this study, the laser surface processing of H13 hot-work tool steel was successfully carried out by TiC powder deposited through laser surface engineering process using a pulse Nd:YAG laser. The deposition process has been done at laser scanning speed of 2, 7 and 12 mm/s and pulse width of 6, 8 and 10 ms and operational distance of 4, 5 and 6 mm. Characterization of the composited area was done using field emission scanning electron microscope (FESEM), scanning electron microscope (SEM), X-ray diffraction (XRD) analysis and energy dispersive X-ray spectroscopy (EDX). Hardness of the composited surfaces was measured with a microhardness tester. Through taking advantage of response surface methodology (RSM), the experimental results were fed into Design Expert software which then mutual relationships between three independent variables were established. Prediction of model at the experimental range using systematic data enables us to provide a better understanding of the simultaneous effect of variables on the properties of composed area. Moreover the optimum value of variables was predicted. In order to applying composite surface with optimized microstructure, the optimal condition for scanning speed, pulse width and operational distance is 12 mm/s, 9.96 ms and 5.94 mm respectively and at this term, microhardness is 1606.49 Vickers. Characterization results of optimized samples showed a composited zone without any crack and porosity, with appropriate incorporation and uniform distribution of TiC particles in the matrix.

کلیدواژه‌ها [English]

  • H13 hot-work tool steel, Nd:YAG laser, RSM
  • TiC powder
1-S. Jhavar, C.P. Paul, N.K. Jain, “Causes of failure and repairing options for dies and molds: A review”, Engineering Failure Analysis, 34 (2013) 519-535.    
2-B. AlMangour, D. Grzesiak, J.M. Yang, “Nanocrystalline TiC-reinforced H13 steel matrix nanocomposites fabricated by selective laser melting”, Material and Design, 96 (2016) 150-161.     
3-B.S. Yilbas, F. Patel, C. Karatas, “Laser controlled melting of H12 hot-work tool steel with B4C particles at the surface”, Optic and Laser Technology, 74 (2015) 36-42.
4-ش. خیراندیش، م. عادلی، م. اسدی اسدآبادی و ی. رضالو، "فولادهای ابزار"، مرکز انتشارات دانشگاه علم و صنعت، (1388).   
5-H. Jesperson, C. Nilsson, “The Influence of the cooling rate during quenching and preheating temperature on the toughness of a hot-work tool steel”, BHM Bergrund Hüttenmännische Monatshefte, 157 (2012) 401-405.
6-X. Zhang, X. J. Liuyan, Z. S. Luo, Q. Zheng, “Improving the High-Temperature Oxidation Resistance of H13 Steel by Laser Cladding with a WC/Co-Cr Alloy Coating”, Anti-Corrosion Methods and Materials, 11 (2015).
7-J.H. LEE, J.H. Jang, B.D. Joo, Y.M. Son, .H. Moon, “Laser surface hardening of AISI H13 tool steel”, Trans. Nonferrous. Met. Soc. China, 19 (2009) 917-920.    
8-J. Davis, “Surface Hardening of Steels”, ASM International, Materials Park, OH, (2002) 227.   
9-H. J. Shin, Y. T. Yoo, “Microstructural and hardness investigation of hot-work tool steels by laser surface treatment”, Journal of Materials Processing Technology, 201 (2008) 342-347.        
10-E. Pagounis, V. Lindroos, M. Talvitie, “Influence of reinforcement volume fraction and size on the microstructure and abrasion wear resistance of hot isostatic pressed white iron matrix composites”, Metall. Mater. Trans. A 27 (1996) 4171-4181.
11-F. Akhtar, “Microstructure evolution and wear properties of in situ synthesized TiB2 and TiC reinforced steel matrix composites”, J. Alloys Compd. 459 (2008) 491-497.
12-W. Jiang, P. Molian, “Nanocrystalline TiC powder alloying and glazing of H13 steel using a CO2 laser for improved life of die-casting dies”, Surf. Coat. Technol. 135 (2001) 139-149.         
13-Womersley D. “Thermal spraying and powder spray welding processes for the hardfacing of grey cast iron”, Mater Des, 11 (1990) 153–1555.       
14-Liu YF, Mu JS, Xu XY, Yang SZ, “Microstructure and dry-sliding wear properties of TiC-reinforced composite coating prepared by plasma-transferred arc weldsurfacing process”, Mater Sci Eng, 458 (2007) 366–370.
15-Lin Yu-Chi, Chen Han-Ming, Chen Yong-Chwang, “Analysis of microstructure and wear performance of SiC clad layer on SKD61 die steel after gas tungsten arc welding”, Mater Des, 47 (2013) 828–835.
16-Yasavol N, Abdollah-zadeh A, Ganjali M, Alidokht SA. “Microstructure and mechanical behavior of pulsed laser surface melted AISI D2 cold work tool steel”. Appl Surf Sci, 265 (2013) 653–662.          
17-Yilbas BS, Patel F, Karatas C. “Laser controlled melting of HSLA steel surface with presence of B4C particles”, Appl Surf Sci, 282 (2013) 601–606.  
18-A. Chehrghani, M. J. Torkamany, M. J. Hamedi, J. Sabbaghzadeh, “Numerical modeling and experimental investigation of TiC formation on titanium surface pre-coated by graghit under pulsed laser irradiation”, Applied Surface Science, 258 (2012) 2068-2076.       
19-Dalong Cong, Zhou Hong, Ren Zhenan, Zhang Haifeng, Ren Luquan, Meng Chao,“Thermal fatigue resistance of hot work die steel repaired by partial laser surface remelting and alloying process”, Opt Lasers Eng, 54 (2014) 55–61.      
20-Xing Youqiang, Jianxin Deng, Xiuting Feng, Sheng Yu. “Effect of laser surface texturing on Si3N4/TiC ceramic sliding against steel under dry friction. Effect of laser surface texturing on Si3N4/TiC ceramic sliding against steel under dry friction”, Mater Des, 52 (2013) 234–245.
21-G. Telasang, J. Dutta Majumdar, G. Padmanabham, M. Tak, I. Manna, “Effect of laser parameters on microstructure and hardness of laser clad and tempered AISI H13 tool steel”, Surface & Coatings Technology, 258 (2014) 1108–1118.     
22-D. Verdi, C.J. Múnez, F. Sevillano, P. Poza, “Laser surface alloying of Gr22 ferritic steel with Ni(Al): Effect of processing parameters on the microstructure and high temperature performance”, Journal of Materials Processing Technology, 213 (2013) 1825–1834. 
23-G. A. Roberts, R. Kenney, “Tool Steel”, ASM International, (1998) 221.          
24-V. Fallah, S.F. Corbin, A. Khajepour, “Solidification behaviour and phase formation during pre‐placed laser cladding of Ti45Nb on mild steel”, Surface and Coatings Technology, 204 (2010) 2400‐2409.
25-K. Cruz-González, O. Torres-López, A. García-León, J.L. Guzmán-Mar, L.H. Reyes,A. Hernández-Ramírez, J.M. Peralta-Hernández, "Determination of optimum operating parameters for Acid Yellow 36 decolorization by electro-Fenton process using BDD cathode", Chemical Engineering Journal, No.160 (2010) 199–206.
 
26-J. P. Wang, Y .Z. Chen, X. W. Ge, H.Q. Yu, "Optimization of coagulation–flocculation process for a paper-recycling wastewater treatment using response surface methodology", Colloids and Surfaces A: Physicochem. Eng. Aspects, No.302 (2007) 204–210.     
 
27-B. Oraon, G. Majumdar, B. Ghosh, "Application of response surface method for predicting electroless nickel plating", Materials and Design, No.27 (2006)1035–1045.
28-R. Soleimani, F. Mahboubi, S.Y. Arman, M. Kazemi, A. Maniee, "Development of mathematical model to evaluate microstructure and corrosion behavior of electroless Ni–P/nano-SiC coating deposited on 6061 aluminum alloy", Journal of Industrial and Engineering Chemistry, 23 (2015) 328–337.
29-M. Torkamany, M. J. Hamedi, F. Malek J. Sabbaghzadeh, “The effect of process parameters on keyhole welding with a 400 W Nd:YAG pulsed laser”, Journal of Physis, 39(2006) 45663.  
30-B. Du, A.N. Samant, S.R. Paital, N.B. Dahotre, “Pulsed laser synthesis of ceramic–metal composite coating on steel”, Applied Surface Science, 255 (2008) 3188‐3194.
31-J. D. Majumdar, I. Manna, "Laser processing of materials", Sadhana, 28 (2003) 495-562.         
32-B. Courant, J. J. Hantzperigue, L. AVRIL, S. Benayoun, “Structure and hardness of titanium surfaces carburized by pulsed laser melting with graghit addition”, Journal of Material Processing Technology, 160 (2005) 374-381.
33- غ. رضوی، م. سبکتکین ریزی، م. طاهری، " بررسی خواص مکانیکی و فیزیکی جوشکاری لیزر و قوس الکتریکی تیتانیم خالض تجاری"، مجله مواد نوین، (1393).