ساخت کامپوزیت فوتوکاتالیستی Fe3O4/SiO2/ZnO با نانوساختار هسته/پوسته/پوسته و مشخصه یابی آن.

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مدیر و ریاست بهش پژوهش آزمایشگاه معتمد محیط زیست، شرکت فن آوران زیست کره، ابهر، زنجان،ایران

2 کارشناس تحقیق آزمایشگاه معتمد محیط زیست، شرکت فن آوران زیست کره، ابهر، زنجان، ایران

3 کارشناس آموزش آزمایشگاه معتمد محیط زیست، شرکت فن آوران زیست کره، ابهر، زنجان، ایران

چکیده

فوتوکاتالیست مغناطیسی Fe3O4/SiO2/ZnO به روش سل- ژل سنتز شد. بدین منظور، در مرحله اول ذرات Fe3O4 به عنوان هسته‌ مغناطیسی این کامپوزیت و با به کارگیری از روش احیای کربن تهیه شد. در مرحله دوم پوشش‌دهی پوسته SiO2 با استفاده از پیش ماده تترا اتیل اورتو سیلیکات (TEOS) انجام شد. در پایان پوسته اکسید روی با استفاده از پیش ماده نیترات روی هیدراته بر روی کامپوزیت Fe3O4/SiO2 قرار گرفت. نانوساختارهای تهیه شده با استفاده از آنالیزهای میکروسکوپ الکترونی روبشی محیطی (FESEM)، میکروسکوپ الکترونی عبوری (TEM)، الگوی پراش پرتو ایکس (XRD)، آنالیز خواص مغناطیسی (VSM) و طیف سنجی پراش انرژی پرتو ایکس (EDX) مشخصه یابی شد. نتایج FESEM و TEM، پوشش‌دهی سیلیس و اکسید روی را بر روی ذرات هسته تایید کرد و فوتوکاتالیست مغناطیسی Fe3O4/SiO2/ZnO با موفقیت تهیه شد. میانگین اندازه ذرات Fe3O4به طور تقریبی 300 نانومتر به دست آمد. ضخامت پوسته‌ سیلیس به طور تقریبی 25 نانومتر و ضخامت پوسته اکسید روی در حد چند نانومتر به دست آمد. نتایج VSM نشان داد که پوشش‌دهی پوسته سیلیس و اکسید روی سبب کاهش مغناطیس اشباع (Ms) پودر Fe3O4 شده است به طوری که مغناطش اشباع از emu/g 80 به emu/g 8/48 کاهش یافته است که این مقدار جهت بازیابی مغناطیسی مناسب است. خواص فوتوکاتالیستی کامپوزیت Fe3O4/SiO2/ZnO تحت تابش نور UV و بر روی تخریب متیلن نارنجی مورد بررسی قرار گرفت. تخریب متیلن نارنجی، 70% به دست آمد.

کلیدواژه‌ها


عنوان مقاله [English]

Fabrication of Fe3O4/SiO2/ZnO photocatalytic composite with core/shell/shell Nanostructure and characterized its

نویسندگان [English]

  • Fardin Ghasemy Piranloo 1
  • fatemeh bavarsiha 2
  • Saeideh Dadashian 3
1 fanavaran zist kore
2 fanavaran zist koreh
3 fanavaran zist kore
چکیده [English]

The magnetic photocatalyst Fe3O4/SiO2/ZnO was synthesized by sol-gel method. For this purpose, in the first stage, Fe3O4 particles were prepared as the magnetic core of this composite and using the carbon recovery method. In the second stage, the coating of the SiO2 shell was performed using the tetraethyl orthosilicate (TEOS) precursor. In the end, the zinc oxide shell was deposited using a zinc hydrate nitrate precursor on the Fe3O4/SiO2 composite. The as-prepared nanostructures were characterized by environmental scanning electron microscopy analysis (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Vibrating Sample Magnetometer (VSM) and Energy Dispersive X-ray (EDX). FESEM and TEM results confirmed the coating of silica and zinc oxide on core particles and the Fe3O4/SiO2/ZnO magnetic photocatalyst was successfully prepared. The particle size mean of Fe3O4 was 300 nm approximately. The silica shell thickness was 25 nm, and the thickness of the zinc oxide shell was about a few nanometers approximately. The VSM results showed that coating of silica and zinc oxide shells reduced the saturation magnetization (Ms) of Fe3O4 powder so that the saturation magnetization decreased from 80/8 emu/g to 48/8 emu/g, which It is suitable for Magnetic Recovery. Photocatalytic properties of Fe3O4/SiO2/ZnO composite were studied on methylene orange degradation under UV light irradiation. Destruction of orange methylene was achieved 70%.

کلیدواژه‌ها [English]

  • "Zinc Oxide"
  • "magnetic"
  • "photocatalyst"
  • "silica"
  • "Core–shell structure"
References: 1- C. Berberidou, I. Pouliso, N.P Xekoukoulotakis, D. Mantavirinos, "Photocatalytic and sonophotocatalytic degradation of malachite green in aqueous solutions", Catalysis B: Environmental, 74, 63–72, 2007.
2- T. Sauer, G. Cesconeto Neto, H. J. José, "Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor", Photochem. Photobiol, A., 149, 147–154, 2002.
3- B. Cui, H. Peng, H. Xia, X. Guo and H. Guo, "Magnetically recoverable core–shell nanocomposites γ-Fe2O3@SiO2@TiO2–Ag with enhanced photocatalytic activity and antibacterial activity", Separation and Purification Technology, 103, pp.251-257, 2013.
4- Y. Chi, Q. Yuan, Y. Li, L. Zhao, N. Li, X. Li, and W. Yan, "Magnetically separable Fe3O4@SiO2@TiO2-Ag microspheres with well-designed nanostructure and enhanced photocatalytic activity", Journal of hazardous materials, 262, pp.404-411, 2013.
5- R. Y. Hong, S. Z. Zhang, G. Q. Di, H. Z. Li, Y. Zheng, J. Ding and D. G. Wei, "Preparation, characterization and application of Fe3O4/ZnO core/shell magnetic nanoparticles", Materials Research Bulletin, 43(8), pp.2457-2468, 2008.
6- A. Sáenz-Trevizo, P. Amézaga-Madrid, P. Pizá-Ruiz, W. Antúnez-Flores, C. Ornelas-Gutiérrez and M. Miki-Yoshida, "Efficient and durable ZnO core-shell structures for photocatalytic applications in aqueous media", Materials Science in Semiconductor Processing, 45, pp.57-68, 2016.
7- X. Feng, H. Guo, K. Patel, H. Zhou, and X. Lou, "High performance, recoverable Fe3O4 ZnO nanoparticles for enhanced photocatalytic degradation of phenol", Chemical Engineering Journal, 244, pp.327-334, 2014.
8- J. Wan, H. Li and K. Chen, "Synthesis and characterization of Fe3O4@ ZnO core–shell structured nanoparticles", Materials Chemistry and Physics, 114(1), pp.30-32, 2009.
9- W. Li, G. Wang, C. Chen, J. Liao and Z. Li, "Enhanced visible light photocatalytic activity of ZnO nanowires doped with Mn2+ and Co2+ ions", Nanomaterials, 7(1), p.20, 2017.
10- P. Boule, D. W. Bahnemann, P. K. J. Roberlsom, "The Handbook of environment chemistry, environmental photochemistry part II", part M, springer- verlag, Berlin Heidelberg, Germany 2, 2005.
11 - ع. دوساااتی، ب. شااااایق بروجنی و ر. ابراهیمی
کهریزسااانگی، "اثر افزایش اکساااید تنگساااتن بر رواص
حفاظت فوتوکاتدی پوشااشهای تیتانیایی تهیه شااده به
روش ساال- ژل"، مجله مواد نوین، جلد 5، شااماره 3 ، ص
134-123 ، بهار 1394 .
12- M. Salehi, H. Hashemipour, M. Mirzaee, "Experimental study of influencing factors and kinetics in catalytic removal of methylene blue with TiO2 nanopowder"’, American journal of environmental engineering 2, 1-7, 2012.
13- J. A. Byrne, B. R. Eggins, N. M. D. Brown, B. McKinney, M. Rouse, "Immobilisation of TiO2 powder for the treatment of polluted water", Environmental 17, 25-36, 1998.
14- X. Chen, C. Li, J. Wang , J. Li, X. Luan, Y. Li, R. Xu, B. Wang, "Investigation on
مجله مواد نوین/ جلد 8/شماره 4/ تابستان 1397
11
solar photocatalytic activity of TiO2 loaded composite: TiO2/Eggshell, TiO2/Clamshell and TiO2/CaCO3", Materials Letters 64 , 1437–1440, 2010.
15- A .Haarstrick , O. M. Kut , and E .
Heinzle ,"TiO2-Assisted Degradation of Environmentally Relevant Organic Compounds in Wastewater Using a Novel Fluidized Bed Photoreactor", Environ. Sci. Technol, 30, 817-824, 1996.
16- R. Ghosh Chaudhuri, S. Paria, "Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications", Chem Rev 112, 2373-2433, 2012.
17- D. Beydoun and R. Amal," Novel Photocatalyst: Titania-Coated Magnetite. Activity and Photodissolution", J. Phys. Chem. B, 104, 4387-4396, 2000.
18- J. Wanga, J. Yangc, X. Li , B. Wei, D. Wanga, H. Songa, H. Zhaic, X. Li, "Synthesis of Fe3O4@SiO2@ZnO–Ag core–shell microspheres for the repeated photocatalytic degradation of rhodamine B under UV irradiation", Molecular Catalysis A: Chemical 406 97–105, 2015.
19- J-W. Lee, K. Hong, W-S. Kim, J. Kim, "Effect of HPC concentration and ultrasonic dispersion on the morphology of titania-coated silica particles", Journal of Industrial and Engineering Chemistry 11, 609-614, 2005.
20- J. Zou, Y. G. Peng, and Y. Y. Tang, "A facile bi-phase synthesis of Fe3O4@SiO2 core–shell nanoparticles with tunable film thicknesses", RSC Advances, 4(19), pp.9693-9700, 2014.
21- Y. Deng, D. Qi, C. Deng, X. Zhang and D. Zhao, "Superparamagnetic high-magnetization microspheres with an Fe3O4@ SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins", Journal of the American Chemical Society, 130(1), pp.28-29, 2008.
22- Z. Wang, L. Shen, S. Zhu, "Synthesis of Core-Shell@@ Microspheres and Their Application as Recyclable Photocatalysts", Int ernational Journal of Photoenergy, 2012.
23- D. Beydoun, R. Amal, G. Low and S. McEvoy, "Occurrence and prevention of photodissolution at the phase junction of magnetite and titanium dioxide", Journal of Molecular Catalysis A: Chemical, 180(1), pp.193-200, 2002.
24- J. Li, L. Gao, Q. Zhang, R. Feng, H. Xu, J. Wang, D. Sun, and C. Xue, "Photocatalytic Property of Fe3O4/SiO2/TiO2 Core-Shell Nanoparticle with Different Functional Layer Thicknesses",10.1155/986809, 2014.
25- H.Osman, Z.Su, X. Ma, S.Liu, X.Liu, D. Abduwayit, “Synthesis of ZnO/C nano-composites with enhanced visible light photocatalytic activity”, Ceram. Int., 42, 10237–10241, 2016.
26- X. Huang, G. Wang, M. Yang, W. Guo, H. Gao, "Synthesis of polyaniline-modified Fe3O4/SiO2/TiO2 composite microspheres and their photocatalytic application", Materials Letters 65, 2887-2890, 2011.