مطالعه تجزیه گرما وزن سنجی ، امپدانسی و ریخت ‌شناسی کُپلیمر ،پایرول-فرمیل پایرول سنتز شده از طریق الکترو پلیمریزاسیون

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، گروه شیمی، شیمی تجزیه، دانشگاه آزاد اسلامی واحد مرودشت، فارس، ایران

چکیده

در این مطالعه کُپلیمر پایرول-فرمیل پایرول (Py-co-FPy) از طریق الکتروپلیمریزاسیون در جریان ثابت 480 µA برای مدت 200 ثانیه در محلول آبی لیتیم پر کلرات، پایرول (Py) و فرمیل پایرول ( FPy)سنتز میگردد. خصوصیات کُپلیمر پایرول-فرمیل پایرول با میکروسکوپ الکترونی گسیل میدانی FESEM ، میکروسکوپ الکترونی عبوری روبشی STEM ، تجزیه گرما وزن سنجی TGA و طیف سنجی امپدانس الکتروشیمیایی EIS مورد مطالعه قرار گرفت. تصاویر گرفته شده توسط میکروسکوپ الکترونی گسیل میدانی نشان میدهند که کُپلیمر پایرول-فرمیل پایرول (Py-co-FPy) سنتز شده دارای ساختار مارپیچی حلزون مانند تو خالی می باشد. نتایج مطالعات امپدانسی همچنین نشان می دهند که کُپلیمر پایرول-فرمیل پایرول جریان یونها را از میان کُپلیمر پایرول-فرمیل پایرول به سطح الکترود افزایش میدهد، به طوریکه رسانایی الکترونی کُپلیمر پایرول-فرمیل پایرول 2.5 برابر بیشتر از پلی پایرول می باشد. ساختار رزنانس مزدوج بین پایرول (Py) و فرمیل پایرول ( FPy)در حضور گروه متین باعث افزایش رسانایی کُپلیمر پایرول-فرمیل پایرول نسبت به پلی پایرول (PPy) است. با توجه به رسانایی بالای کُپلیمر پایرول-فرمیل پایرول، این ترکیب میتواند کاربردهای متعددی رادر حسگرها ، بیو حسگرها، باتریها و ابر خازنها از آن بدست اورد. نتایج تجزیه گرما وزن سنجی نشان می دهند که کُپلیمر پایرول-فرمیل پایرول دارای پایداری حرارتی بیشتری از پلی پایرول است.

کلیدواژه‌ها


عنوان مقاله [English]

The gravimetric,, impedance, and morphology study of pyrrole-formylpyrrole copolymer synthesized by electro-polymerization

نویسنده [English]

  • Mehrdad Gholami
. Assistant Prof. of Analytical Chemistry, Department of Chemistry, Islamic Azad University of Marvdasht, Analytical Chemistry, Marvdasht, Iran.
چکیده [English]

In this study a direct electrochemical copolymerization of pyrrole-formyl pyrrole (Py-co-FPy) was carried out by copolymerization of formyl pyrrole and pyrrole in LiClO4 aqueous solution under constant current of 480 µA for 200 s. The (Py-co-FPy) copolymer was characterized using field emission scanning electron microscope (FESEM), energy-filtering transmission electron microscope (EFTEM), thermal gravimetric analysis (TGA) and Electrochemical Impedance Spectroscopy (EIS). The FESEM images showed that the synthesized copolymer had a hollow whelk-like helixes structure. Moreover, the whorls on the bodies of (Py-co-FPy) copolymer whelk have well-ordered periodic nanostructures that provides a great high ratio of surface to volume. The Impedance study results confirm that (Py-co-FPy) copolymer layer can improve the electron conduction 2.5 times higher than PPy. The conjugated structure between Py and FPy in the presence of methine group can cause the enhancement of conductivity compared to polypyrrole. TGA analysis reveals that the Py-co-PPy copolymer has more thermal stability compared to polypyrrole.

کلیدواژه‌ها [English]

  • pyrrole- formyl pyrrole copolymer
  • electropolymerization
  • impedance spectroscopy
  1. Rudge, A., et al., Conducting polymers as active materials in electrochemical capacitors. Journal of Power Sources, 1994. 47(1-2): p. 89-107.
  2. Janata, J. and M. Josowicz, Conducting polymers in electronic chemical sensors. Nat Mater, 2003. 2(1): p. 19-24.
  3. Patil, A., A. Heeger, and F. Wudl, Optical properties of conducting polymers. Chemical Reviews, 1988. 88(1): p. 183-200.
  4. Gholami, M., P.M. Nia, and Y. Alias, Morphology and electrical properties of electrochemically synthesized pyrrole–formyl pyrrole copolymer. Applied Surface Science, 2015. 357, Part A: p. 806-813.
  5. Gholami, M., et al., Flexible supercapacitor based on electrochemically synthesized pyrrole formyl pyrrole copolymer coated on carbon microfibers. Applied Surface Science, 2016. 378: p. 259-269.
  6. Bulakhe, R.N., et al., Fabrication and performance of polypyrrole (Ppy)/TiO2 heterojunction for room temperature operated LPG sensor. Sensors and Actuators B: Chemical, 2013. 181(0): p. 417-423.
  7. Navale, S.T., et al., Room temperature NO2 gas sensor based on PPy/α-Fe2O3 hybrid nanocomposites. Ceramics International, 2014. 40(6): p. 8013-8020.
  8. Prakash, S., et al., Copper nanoparticles entrapped in SWCNT-PPy nanocomposite on Pt electrode as NOx electrochemical sensor. Talanta, 2011. 85(2): p. 964-969.
  9. Gholami, M., et al., Preparation of a miniaturised iodide ion selective sensor using polypyrrole and pencil lead: effect of double-coating, electropolymerisation time, and current density. Chemical Papers, 2013. 67(8): p. 1079-1086.
  10. Gholami, M., et al., A novel method for fabricating Fe2+ ion selective sensor using polypyrrole and sodium dodecyl sulfate based on carbon screen-printed electrode. Measurement, 2015. 69(0): p. 115-125.
  11. Gupta, V.K., et al., Molecular imprinted polypyrrole modified glassy carbon electrode for the determination of tobramycin. Electrochimica Acta, 2013. 112(0): p. 37-43.
  12. Nabatova-Gabain, N., Y. Wasai, and T. Tsuboi, Spectroscopic ellipsometry study of Ir(ppy)3 organic light emitting diode. Current Applied Physics, 2006. 6(5): p. 833-838.
  13. Rogach, A.L., et al., Light‐emitting diodes with semiconductor nanocrystals. Angewandte Chemie International Edition, 2008. 47(35): p. 6538-6549.
  14. Tsai, M.-L., P.-J. Chen, and J.-S. Do, Preparation and characterization of Ppy/Al2O3/Al used as a solid-state capacitor. Journal of Power Sources, 2004. 133(2): p. 302-311.
  15. Ates, M., Review study of electrochemical impedance spectroscopy and equivalent electrical circuits of conducting polymers on carbon surfaces. Progress in Organic Coatings, 2011. 71(1): p. 1-10.
  16. Sultana, I., et al., Electrodeposited polypyrrole (PPy)/para (toluene sulfonic acid) (pTS) free-standing film for lithium secondary battery application. Electrochimica Acta, 2012. 60(0): p. 201-205.
  17. Zhao, J., et al., Fe3O4/PPy composite nanospheres as anode for lithium-ion batteries with superior cycling performance. Electrochimica Acta, 2014. 121(0): p. 428-433.
  18. Yang, Z., et al., Potentiometric glucose biosensor based on core–shell Fe3O4–enzyme–polypyrrole nanoparticles. Biosensors and Bioelectronics, 2014. 51(0): p. 268-273.
  19. Schuhmann, W., Conducting polymer based amperometric enzyme electrodes. Microchimica Acta, 1995. 121(1-4): p. 1-29.
  20. Gerard, M., A. Chaubey, and B. Malhotra, Application of conducting polymers to biosensors. Biosensors and Bioelectronics, 2002. 17(5): p. 345-359.
  21. Zhao, F., et al., E-Fenton degradation of MB during filtration with Gr/PPy modified membrane cathode. Chemical Engineering Journal, 2013. 230(0): p. 491-498.
  22. Burgmayer, P. and R.W. Murray, Ion gate electrodes. Polypyrrole as a switchable ion conductor membrane. The Journal of Physical Chemistry, 1984. 88(12): p. 2515-2521.
  23. Amaike, M. and T. Iihama, Chemical polymerization of pyrrole with disulfide structure and the application to lithium secondary batteries. Synthetic metals, 2006. 156(2): p. 239-243.
  24. Diaz, A., K.K. Kanazawa, and G.P. Gardini, Electrochemical polymerization of pyrrole. Journal of the Chemical Society, Chemical Communications, 1979(14): p. 635-636.
  25. میرزایی, دهقانیان, and چنگیز, رسوب نشانی اسپینل کبالتیت نیکل روی فوم نیکل به روش الکتروشیمیایی جریان ثابت و کاربرد ابرخازنی آن. علمی-پژوهشی مواد نوین, 2019. 9(35): p. 39-48.
  26. Segawa, H., T. Shimidzu, and K. Honda, A novel photo-sensitized polymerization of pyrrole. J. Chem. Soc., Chem. Commun., 1989(2): p. 132-133.
  27. Ünür, E., et al., Synthesis and characterization of thiophene-capped polytetrahydrofuran conducting copolymers. Materials Chemistry and Physics, 2005. 91(2–3): p. 261-268.
  28. Cihaner, A., Electrochemical synthesis of new conducting copolymers containing pseudo-polyether cages with pyrrole. Journal of Electroanalytical Chemistry, 2007. 605(1): p. 8-14.
  29. Baleg, A.A., et al., Impedimetry and microscopy of electrosynthetic poly(propylene imine)-co-polypyrrole conducting dendrimeric star copolymers. Electrochimica Acta, 2014. 128(0): p. 448-457.
  30. Cabuk, M., et al., Synthesis, characterization and antimicrobial activity of biodegradable conducting polypyrrole-graft-chitosan copolymer. Applied Surface Science, 2014. 318(0): p. 168-175.
  31. Cabuk, M., M. Yavuz, and H.I. Unal, Electrokinetic properties of biodegradable conducting polyaniline-graft-chitosan copolymer in aqueous and non-aqueous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014. 460(0): p. 494-501.
  32. Caffrey, P.O. and M.C. Gupta, Electrically conducting superhydrophobic microtextured carbon nanotube nanocomposite. Applied Surface Science, 2014. 314(0): p. 40-45.
  33. Foundas, M., et al., Boehmite suspension behaviour upon adsorption of methacrylate–phosphonate copolymers. Powder Technology, 2015. 269(0): p. 385-391.
  34. Fu, P., et al., Corrosive inhibition behavior of well-dispersible aniline/p-phenylenediamine copolymers. Progress in Organic Coatings, 2013. 76(4): p. 589-595.
  35. Pattananuwat, P., M. Tagaya, and T. Kobayashi, A novel highly sensitive humidity sensor based on poly(pyrrole-co-formyl pyrrole) copolymer film: AC and DC impedance analysis. Sensors and Actuators B: Chemical, 2015. 209(0): p. 186-193.
  36. Hoshina, Y. and T. Kobayashi, Electrically Conductive Films Made of Pyrrole-Formyl Pyrrole by Straightforward Chemical Copolymerization. Industrial & Engineering Chemistry Research, 2012. 51(17): p. 5961-5966.
  37. Kobayashi, Y.H. and Takaomi, Effect of Acidic Catalyst on Properties of Novel Conductive Copolymer Films Made of Pyrrole and Formyl Pyrrole. Engineering, 2012. 04: p. 139.
  38. Tagaya, M., et al., Nanostructural analysis of self-standing pyrrole/2-formylpyrrole copolymer films. Micron, 2013. 46(0): p. 22-26.
  39. Xie, Q., S. Kuwabata, and H. Yoneyama, EQCM studies on polypyrrole in aqueous solutions. Journal of Electroanalytical Chemistry, 1997. 420(1–2): p. 219-225.
  40. Zhou, M. and J. Heinze, Electropolymerization of pyrrole and electrochemical study of polypyrrole: 1. Evidence for structural diversity of polypyrrole. Electrochimica Acta, 1999. 44(11): p. 1733-1748.
  41. Ansari, R., Polypyrrole conducting electroactive polymers: synthesis and stability studies. Journal of Chemistry, 2006. 3(4): p. 186-201.
  42. Chen, G., et al., Whelk-like Helixes of Polypyrrole Synthesized by Electropolymerization. Advanced Functional Materials, 2007. 17(11): p. 1844-1848.
  43. Bhugul, V. and G. Choudhari, Synthesis and characterization of polypyrrole-zinc oxide nano composites by ex-situ technique and study of their thermal &Electrical properties. 2013.
  44. Moozarm Nia, P., et al., Electrodeposition of copper oxide/polypyrrole/reduced graphene oxide as a nonenzymatic glucose biosensor. Sensors and Actuators B: Chemical, 2015. 209(0): p. 100-108.