سنتز کربنات باریم به روش مکانوشیمیایی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی مواد، دانشکده فنی و مهندسی، دانشگاه یاسوج، یاسوج، ایران.

2 دانشیار، گروه مهندسی مواد، دانشکده فنی و مهندسی، دانشگاه یاسوج، یاسوج، ایران

3 استادیار - گروه مهندسی مواد، دانشکده فنی و مهندسی، دانشگاه یاسوج، یاسوج، ایران.

4 استادیار ، گروه مهندسی مواد، دانشکده فنی و مهندسی، دانشگاه یاسوج، یاسوج، ایران.

چکیده

چکیده
مقدمه: در این پژوهش، کربنات باریم به روش مکانوشیمیایی از مخلوط کنسانتره باریت-کربنات سدیم تولید شد. هدف از این پژوهش، تولید کربنات باریم از کنسانتره باریت و ارزیابی فازها و محصولات بود.
روش: پس از خرد کردن کنسانتره باریت، فرایند اسیدشویی با اسیدکلریدریک یک نرمال انجام شد. سپس مخلوط­هایی از کنسانتره باریت-کربنات سدیم با نسبت­های مولی متفاوت  (5/2 :1، 1:2، 1:1= BaSO4:Na2CO3) تهیه و آسیاکاری در یک آسیای گلوله­ای سیاره­ای در زمان­های گوناگون (2 و 5 ساعت) انجام شد. نمونه های پس از آسیاکاری و محصولات پس از گرمایش، در آب مقطر حل شدند، سپس باقی­مانده جامد در آون خشک شد. گرمایش همدمای نمونه ها درون بوته های آلومینایی و زیرکونیایی انجام شد. مخلوطی از نمونه کنسانتره باریت-کربنات سدیم در شرایط بدون آسیاکاری تهیه شد. یافت های این پژوهش با روش­های XRF ،XRD  و STA ارزیابی شدند و ریزساختارهای میکروسکوپی محصولات به روش SEM بررسی شدند.
یافته‌ها: بر اساس نتایج آزمون STA، نشانه­های مرتبط به انجام واکنش بین مواد اولیه (کنسانتره باریت-کربنات سدیم) در مخلوط­های پس از 2 و 5 ساعت آسیاکاری در دمای حدود 720 درجه سانتیگراد مشاهده شد. در مخلوط بدون آسیاکاری، در دمای حدود 735 درجه سانتیگراد، این نشانه­ها مشاهده شد. بر اساس نتایج (XRD) واکنش شیمیایی بین کنسانتره باریت و کربنات سدیم در مخلوط­های پس از آسیاکاری بطور کامل انجام نشد. پس از گرمایش همدما در دمای 700 درجه سانتیگراد و زمان یک ساعت، نشانه­های فاز اورترومبیک کربنات باریم در محصولات مشاهده شد. نتایج نشان داد گرمایش در دمای 750 درجه سانتیگراد و زمان دو ساعت برای مخلوط پس از آسیاکاری کنسانتره باریت-کربنات سدیم با نسبت مولی 5/2 :1، شرایط مناسبی برای تولید فاز کربنات باریم است. نشانه­های ضعیفی از یک فاز میانی (Ca4Ba2Si6O18) در الگوهای XRD مرتبط به مخلوط کنسانتره باریت-کربنات سدیم مشاهده شد. برای مقایسه، آزمایش­هایی با نمونه سولفات باریم خالص (بارکس) انجام شد. در محصول گرمایش همدما (750 درجه سانتیگراد، زمان 2 ساعت) برای مخلوط سولفات باریم (بارکس)-کربنات سدیم با نسبت مولی (5/2 : 1) ، فاز کربنات باریم تولید شد و اثری از این فاز میانی مشاهده نگردید.
 
نتیجه‌گیری: نتایج این پژوهش نشان داد می توان با فرایند آسیاکاری و گرمایش همدما از مخلوط کنسانتره باریت-کربنات سدیم به فاز کربنات باریم رسید.

کلیدواژه‌ها


عنوان مقاله [English]

Synthesis of barium carbonate by mechanochemical method

نویسندگان [English]

  • Tahereh Shayanzadeh Moghadam 1
  • Nader Setoudeh 2
  • Raziye Hayati 3
  • Abbas mohassel 4
1 M. Sc Student-Materials Engineering Department- School of Engineering-Yasouj University, Yasouj, Iran.
2 Associate Professor-Materials Engineering Department- School of Engineering-Yasouj University- Yasouj, Iran.
3 Assistant Professor-Materials Engineering Department- School of Engineering-Yasouj University, Yasouj, Iran.
4 Assistant Professor-Materials Engineering Department- School of Engineering-Yasouj University, Yasouj, Iran.
چکیده [English]

Abstract
Introduction: In this research, barium carbonate was synthesized via mechanochemical method from the mixture of barite concentrate-sodium carbonate. The producing of barium carbonate form barite concentrate and the evaluation of the phases/products were the goal of this research.
Methods: After crushing the barite concentrate, the acid washing process was done with 1 N of HCl. The mixtures of barite concentrate-sodium carbonate with different molar ratios (BaSO4:Na2CO3=1:1, 1:2, 1:2.5) were prepared and milled in a planetary mill for different times (2 and 5 hours). The as-milled samples and the heated products were dissolved in distilled water and then the solid residues were dried in an oven. The isothermal heating of the samples was done into the alumina and zirconia crucibles. The unmilled mixture of barite concentrate-sodium carbonate was also prepared. The findings of this research were evaluated using XRF, XRD and STA methods and the microstructures of the samples were studied by SEM method.
Findings: The2 and 5 h-milled mixtures showed the sign of chemical reaction between the starting materials (barite concentrate-sodium carbonate) at 720⁰C in STA results. This sign however was observed at 735 ͦC in the unmilled mixture. According to XRD patterns, the chemical reaction between barite concentrates and sodium carbonate was not completed in the milled mixtures. The signs of orthorhombic phase of barium carbonate were observed in the products after isothermal heating at700⁰C for 1 h. The results indicated that the isothermal heating of the milled mixture of barite concentrate-sodium carbonate with a molar ratio of 1:2.5 at 750⁰C for 2 h was the suitable conditions for synthesizing of barium carbonate. Additionally, the weak signs of an intermediate phase (Ca4Ba2Si6O18) were observed in the XRD patterns of the barite concentrate-sodium carbonate mixture. For comparison, the experiments were performed with pure barium sulfate sample (Barex). In the product of isothermal heating (750⁰C, 2 h) for the mixture of barium sulfate (Barex)-sodium carbonate (molar ratio :1:2.5), barium carbonate phase was produced and no trace of the intermediate phase was observed. The results of this research showed that it is possible to synthesis barium carbonate phase from the mixture of barite concentrate-sodium carbonate using ball milling process and isothermal heating.

کلیدواژه‌ها [English]

  • Barite
  • Barium carbonate
  • Acid washing
  • Mechanochemical
  • Structural analysis

[1] Suárez-Orduña, R., Rivas-Vazquez, L. P., Rendón-Angeles, J. C., & Yanagisawa, K. Kinetic study of the conversion of mineral barite to barium carbonate under alkaline hydrothermal conditions. Mineral Processing and Extractive Metallurgy, (2009); 118(1): 18-22.‏

[2] Sabet, M., Salavati-Niasari, M., & Fard, Z. A. Synthesis and characterization of barium carbonate nanostructures via simple hydrothermal method. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, (2016);  46(3): 317-322.‏

[3] Tai, C. Y., & Liu, H. S. Synthesis of submicron barium carbonate using a high-gravity technique. Chemical engineering science, (2006); 61(22): 7479-7486.‏          

]4[سالم، ا.، توکلی اسکوئی، ی. بررسی تأثیر خواص سینتیکی کاتالیزور Na2CO3 در فرآوری سنگ معدن باریت. کنفرانس مهندسی معدنی ایران دانشگاه تربیت مدرس، 1383؛ 1 ـ 10.

[5] Patnaik, P. Handbook of inorganic chemicals. New York: McGraw-Hill; (2003), Vol. 529.    

[6] Guzmán, D., Fernández, J., Ordoñez, S., Aguilar, C., Rojas, P. A., & Serafini, D. Effect of mechanical activation on the barite carbothermic reduction. International Journal of Mineral Processing, (2012); 102: 124-129.‏

[7] Malysh, L. A., Gaisin, L. G., Volkova, M. F., Prokhorov, A. G., & Tkachev, K. V. Reduction of recycled barium sulfate. Russian journal of applied chemistry, (2002);  75(1): 14-17.‏

[8] Karagiozov, C., & Momchilova, D. Synthesis of nano-sized particles from metal carbonates by the method of reversed mycelles. Chemical Engineering and Processing: Process Intensification, (2005); 44(1): 115-119.‏

[9] Dinamani, M., Kamath, P. V., & Seshadri, R. Electrodeposition of BaCO3 coatings on stainless steel substrates. Crystal growth & design, . (2003);  3(3): 417-423.‏         

 [10] Zelati, A., Amirabadizadeh, A., & Kompany, A. Preparation and characterization of barium carbonate nanoparticles. International Journal of Chemical Engineering and Applications, (2011); 2(4): 299.‏     

[11] Guru, S., Bajpai, A. K., & Amritphale, S. S. Influence of nature of surfactant and precursor salt anion on the microwave assisted synthesis of barium carbonate nanoparticles. Materials Chemistry and Physics, (2020); 241: 122377.‏              

[12] Thongtem, T., Tipcompor, N., Phuruangrat, A., & Thongtem, S. Characterization of SrCO3 and BaCO3 nanoparticles synthesized by sonochemical method. Materials Letters, (2010); 64(4): 510-512.‏

[13] Behmanesh, N., Heshmati-Manesh, S., & Ataie, A. Role of mechanical activation of precursors in solid state processing of nano-structured mullite phase. Journal of Alloys and Compounds, (2008); 450(1-2): 421-425.‏

]14[ ستوده، ن. تاثیر آسیا کاری پر انرژی روی دمای تشکیل فازهای محصول در سیستم آلومینیم-آلومینا-زیرکن. نشریه علمی پژوهشی مواد پیشرفته در مهندسی،1392؛ (2) 32: 77-89.  

]15[ستوده، ن.، عسکری زمانی، م. ع.، محصل،ع. تاثیر فرآیند آسیاکاری مکانیکی بر احیا کربوترمیک زیرکن. فصلنامه علمی-پژوهشی مواد نوین،1392؛  (11) 4: 89-100.        

]16[ احرام­باف، ل.، ستوده، ن.، علی عسکری زمانی، م. ع. و حیاتی، ر. سنتز استرانسیم تیتانات از کنسانتره سلستیت. فصلنامه علمی-پژوهشی مواد نوین، 1398؛ (37) 10: 105-118.   

[17] Miclea, C., Tanasoiu, C., Spanulescu, I., Miclea, C. F., Gheorghiu, A., Amarande, L., & Miclea, C. T. Microstructure and properties of barium titanate ceramics prepared by mechanochemical synthesis. Rom. J. Inform. Sci. Technol, (2007); 10(4): 335-345.‏             

[18] Ohara, S., Kondo, A., Shimoda, H., Sato, K., Abe, H., & Naito, M. Rapid mechanochemical synthesis of fine barium titanate nanoparticles. Materials Letters, (2008);  62(17-18): 2957-2959.        

[19] Zhang, Q., & Saito, F. Non-thermal production of barium carbonate from barite by means of mechanochemical treatment. Journal of chemical engineering of Japan, (1997); 30(4): 724-727.‏

[20] Alimohammadi, E., Sheibani, S., & Ataie, APreparation of nano-structured strontium carbonate from Dasht-e kavir celestite ore via mechanochemical method. Journal of Ultrafine Grained and Nanostructured Materials, (2018);  51(2): 147-152.            

[21] Dayani, N., AmirArjmand, A., Nouri‐Khezrabad, M., & Hasani, S. High‐efficiency mechanochemical synthesis of Strontium carbonate nanopowder from Celestite. International Journal of Applied Ceramic Technology, (2021); 18(1): 24-31.‏   

[22] Setoudeh, N., Welham, N. J., & Azami, S. M. Dry mechanochemical conversion of SrSO4 to SrCO3. Journal of Alloys and Compounds, (2010);  492(1-2): 389-391.‏   

[23] Bageri, B. S., Mahmoud, M. A., Shawabkeh, R. A., & Abdulraheem, A. Evaluation of Barium Sulfate (Barite) Solubility Using Different Chelating Agents at a High Temperature. Journal of Petroleum Science and Technology, (2017); 7(1): 42-56.     

[24] Ali, A. M., & Messaoud, H. Barium sulphate deposits. Energy Procedia, (2019); 157: 879-891.‏

[25]C. Suryanarayana, Mechanical Alloying and Milling. Progress in Materials Science, (2001); 46, 1-184.       

[26] Gomez-Yañez, C., Benitez, C., & Balmori-Ramirez, H. Mechanical activation of the synthesis reaction of BaTiO3 from a mixture of BaCO3 and TiO2 powders. Ceramics International, (2000); 26(3): 271-277.‏              

[27] Singh, K. C., & Nath, A. K. Barium titanate nanoparticles produced by planetary ball milling and piezoelectric properties of corresponding ceramics. Materials Letters, (2011); 65(6): 970-973.‏       

[28] Zumdahl, S. S. Chemical Principles. Sixth Edition. Boston New York. Charles Hartford; 2009.

[29] HSC Chemistry for Windows, version 6.12, Outotec Research. Oy, (1974-2007).
 

[30] Calos, N. J., Forrester, J. S., & Schaffer, G. B. The mechanisms of combustion and continuous reactions during mechanical alloying. Journal of Solid State Chemistry, (2001);  158(2): 268-278.‏          

]31[ بخشنده، س. ستوده، ن.، عسکری زمانی، م.ع. و محصل ع. احیا کربوترمیک اکسید نیکل. فصلنامه علمی ـ پژوهشی فرایندهای نوین در مهندسی مواد ، 1398؛  (2) 13: 63-75.         

[32] Setoudeh, N., & Welham, N. J. Metallothermic reduction of zinc sulfide induced by ball milling. Journal of Materials Science, (2017); 52(11): 6388-6400.‏               
 

[33] Dong, J., Li, J., Zhu, F., Li, Z., & FaRawi, R. Melting curve minimum of barium carbonate BaCO3 near 5 GPa. American Mineralogist: Journal of Earth and Planetary Materials, (2019); 104(5): 671-678.‏   

[34] Li, Z., Li, J., Lange, R., Liu, J., & Militzer, B. Determination of calcium carbonate and sodium carbonate melting curves up to Earth's transition zone pressures with implications for the deep carbon cycle. Earth and Planetary Science Letters, (2017); 457: 395-402.

[35] Dadkhah, M., Salavati-Niasari, M., & Davar, F. A new inorganic framework in the synthesis of barium carbonate nanoparticles via convenient solid state decomposition route. Advanced Powder Technology, (2013); 24(1): 14-20.