بررسی تاثیر خواص ماده آلیاژ هوشمند بر عملکرد استنت به کار برده شده در نای انسان با استفاده از مدلسازی به روش المان محدود

نوع مقاله : مقاله پژوهشی

نویسنده

گروه مهندسی پزشکی، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی، واحد ارسنجان، ارسنجان، ایران

چکیده

چکیده
مقدمه: استنت از جنس آلیاژ هوشمند می‌تواند با کاهش مشکلاتی نظیر تغییر شکل متناسب با شرایط واقعی بدن نسبت به سایر استنت‌ها برای استفاده در سیستم تنفسی فوقانی به‌کار رود. در این مطالعه با استفاده از روش المان محدود رفتار دو نوع استنت از جنس آلیاژ هوشمند با خواص متالورژیکی متفاوت مورد مطالعه قرار گرفت.  
روش: هندسه نای از تصاویر توموگرافی کامپیوتری یک فرد سالم به دست آمد. سپس یک مدل المان محدود از یک نای واقعی انسانی برای تجزیه و تحلیل تغییر شکل نای پس از کاشت پروتز انتخاب شد. نهایتا تحت بیشترین فشار متوسط استاتیک ورودی به نای با استفاده از رویکرد تعامل سیال و سازه مورد تحلیل قرار گرفت. یک شبکه مبتنی بر المانهای سازمان ‌یافته برای دیواره نای و یک شبکه غیر سازمان ‌یافته برای سیال هوا برای انجام شبیه‌سازی‌ها در نرم افزار انسیس ایجاد گردید.
یافته­ ها: تغییر شکل استنت آنالیز و با تغییر شکل نای سالم در غیاب پروتز مقایسه ‌شد. نتایج نشان داد که بیشترین تغییر شکل ایجاد شده در نای قبل از استنت گذاری تا 3/8 میلیمتر می باشد. رفتار آلیاژ هوشمند 2 با تغییر شکل 8/5 میلیمتر بیشتر هماهنگ با شرایط تغییر شکل نای برای شرایط واقعی بدن بدون حضور استنت بود.
نتیجه­ گیری: هر چه تغییر شکل با میزان تمرکز تنش در محل اتصال استنت به نای کاسته شود، از خطرات جابجایی استنت و خفگی بیماران پرهیز می گردد.  این تحقیق می تواند راهی مناسب برای تعیین رفتار استنت­ های هوشمند با توجه به اثرات خواص متالوژیکی متفاوت آنها ارائه کند.
 

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the effect of intelligent alloy material properties on the performance of stents used in human trachea using FEM

نویسنده [English]

  • Hamidreza Mortazavy Beni
Department of Biomedical Engineering, Arsanjan Branch, Islamic Azad University, Arsanjan, Iran
چکیده [English]

Abstract
Introduction: An intelligent alloy stent can be used in the upper respiratory system to reduce problems such as deformation according to the actual body conditions compared to other stents. This study studied the behavior of two types of intelligent alloy stents with different metallurgical properties using the finite element method (FEM).
Methods: Tracheal geometry was obtained from a healthy person's computed tomography (CT) images. Then, a finite element model of a real human trachea was selected to analyze the deformation of the trachea after the prosthesis implant. Finally, it was analyzed under the maximum average static pressure entering the trachea using the fluid-structure interaction (FSI) approach. A mesh based on structured elements for the tracheal wall and an unstructured mesh for air-fluid were created to perform simulations in ANSYS software.
Findings: The deformation of the stent was analyzed and compared with the deformation of the healthy trachea in the absence of the prosthesis. The results showed that the most deformation in the trachea before stenting is up to 3.8 mm. The behavior of intelligent alloy 2 with 5.8 mm deformation was more consistent with tracheal deformation conditions for real body conditions without the presence of a stent. As much as the deformation is reduced by the amount of stress concentration in the stent-trachea junction, the risks of stent displacement and patient suffocation are avoided.
Conclusion: This research can provide a suitable way to determine the behavior of intelligent stents according to the effects of their different metallurgical properties.

کلیدواژه‌ها [English]

  • Intelligent alloys
  • Stent
  • Trachea
  • FEM
  • FSI
  1. Ding XM, Ding YA, Duan YF, Chen JY, Li L, Ren FP, Sun J. A novel method for precise implantation of tracheal Y-shaped stent. Front Med (Lausanne). (2024).11:1337669.
  2. Bao , Yudong, Zhan , Yang,Li ,     Xu,Qu ,     Shengqian,Recent Patents on Intervention Auxiliary Device of Tracheal Stent, Recent Patents on Engineering, volume 17, issue 6, pages 147-161, (2023), issn 1872-2121/2212-4047.
  3. Jung, H.S., Chae, G., Kim, J.H. et al. The mechanical characteristics and performance evaluation of a newly developed silicone airway stent (GINA stent). (2021). Sci Rep 11, 7958.
  4. Ilegbusi, O. J., Islam, A., & Santhanam, A. P. Computational modelling of airflow in distal airways using hybrid lung model. Mathematical and Computer Modelling of Dynamical Systems, (2023). 29(1), 186–207.
  5. Ahmadi Alashti, M., Vahidi, B., Ebad, M. 'Computational Simulation of Airflow with Aerosols in Distal Parts of a Human Respiratory System: Investigating the Effects of Gravity', Iranian Journal of Biomedical Engineering, 13(1), (2019). pp. 1-15.
  6. Qi, S., Li, Z., Yue, Y. et al. Computational fluid dynamics simulation of airflow in the trachea and main bronchi for the subjects with left pulmonary artery sling. BioMed Eng OnLine 13, (2014). 85. 
  7. Endalew Getnet Tsega, "Computational Fluid Dynamics Modeling of Respiratory Airflow in Tracheobronchial Airways of Infant, Child, and Adult", Computational and Mathematical Methods in Medicine, vol. 2018, Article ID 9603451, (2018), 9 pages.
  8. S. Jayaraju, M. Brouns, S. Verbanck, C. Lacor, Fluid flow and particle deposition analysis in a realistic extrathoracic airway model using unstructured grids, J. Aerosol Sci. 38 (2007) 494–508.
  9. Y. Liu, R. So, C. Zhang, Modeling the bifurcation flow in a human lung airway, J. Biomech. 35 (2002) 465–473.
  10. Y. Liu, R. So, C. Zhang, Modeling the bifurcation flow in an asymmetric human lung airway, J. Biomech. 36 (2003) 951–959.
  11. H. Luo, Y. Liu, Modeling the bifurcating flow in a ct-scanned human lung airway, J. Biomech. 41 (2008) 2681–2688.
  12. P. Nithiarasu, O. Hassan, K. Morgan, N. Weatherill, C. Fielder, H. Whittet, P. Ebden, K. Lewis, Steady flow through a realistic human upper airway geometry, Int. J. Numerical Methods Fluid 57 (2008) 631–651.
  13. Z. Zhang, R. Lessmann, Computer simulation of the flow field and particle deposition by diffusion in a 3-d human airway bifurcation, Aerosol Sci. Technol. 25 (1996) 338–352.
  14. Z. Zhang, C. Kleinstreuer, Transient airflow structures and particle transport in a sequentially branching lung airway model, Phys. Fluids 14 (2002) 862–880.
  15. I. Balashazy, T. Heistracher, W. Hoffmann, Airflow and particle deposition patterns in bronchial airway bifurcations: the effect of different cfd models and bifurcation geometries, J. Aerosol Med. 9 (1996) 287–301.
  16. C. Kim, A. Iglesias, Deposition of inhaled particles in bifurcating airway models: I. inspiratory deposition, J. Aerosol Med. 2 (1989) 1–14.
  17. C. Kim, A. Iglesias, L. Garcia, Deposition of inhaled particles in bifurcating airway models: Ii. expiratory deposition, J. Aerosol Med. 2 (1989) 15–27.
  18. X. Yang, Y. Liu, R. So, J. Yang, The effect of inlet velocity profile on the bifurcation copd airway flow, Comput. Biol. Med. 36 (2006) 181–194.
  19. K. Koombua, R. Pidaparti, Inhalation induced stresses and flow characteristics in human airways through fluid-structure interaction analysis, Model. Simul. Eng. 2008 (2008) 1–8.
  20. K. Koombua, R. Pidaparti, P. Longest, K. Ward, Tissue flexibility effects on airway pressure and stress during mechanical ventilation, Mol. Cell. Biomech. 6 (4) (2009) 203–216.
  21. M. Malvè, A. Pérez del Palomar, J.L. López-Villalobos, A. Ginel, M. Doblaré, Fsi analysis of the coughing mechanism in a human trachea, Ann. Biomed. Eng. 38 (4) (2010) 1556–1565.
  22. M. Malvè, A. Pérez del Palomar, S. Chandra, J.L. López-Villalobos, A. Mena, E.A. Finol, A. Ginel, M. Doblaré, FSI analysis of a healthy and a stenotic human trachea under impedance-based boundary conditions, J. Biomechanical Eng. 133 (2011) 021001–021012.
  23. W. Wall, T. Rabczuk, Fluid-structure interaction in lower airways of ct-based lung geometries, Int. J. Numerical Methods Fluids 57 (2008) 653–675.
  24. J. Rains, J. Bert, C. Roberts, P. Paré, Mechanical properties of human tracheal cartilage, J. Appl. Physiol. 72 (1992) 219–225.
  25. H. Yamada, Mechanical properties of respiratory and digestive organs and tissues - Strength of Biological Materials, 1970.
  26. N. Stephens, R. Cardinal, B. Simmons, Mechanical properties of tracheal smooth muscle: effects of temperature, Am. J. Physiol. Cell Physiol. 233 (1977) C92–C98.
  27. C. Forster, W. Wall, E. Ramm, Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible flows, Comput. Methods Appl. Mech. Eng. 196 (2007) 1278–1293.
  28. Nematzadeh, Fardin, Sadr Nejad, Seyed Khatib al-Islam, & Seyed Salehi, Majid. Computational investigation of mechanical behavior of smart alloy stent under axial loading for application in peripheral vessels. Sharif Mechanical Engineering Journal, (2022).
  29. Mortazavy Beni, H., Hassani, K. & Khorramymehr, S. Study of the sneezing effects on the real human upper airway using fluid–structure interaction method. J Braz. Soc. Mech. Sci. Eng. 41, (2019).
  30. Bagheri Reza, Fatahi Masoum Seyed Hossein, Benazadeh Mohammad. The role of tracheal stenting in the replacement treatment of tracheal strictures. Iranian ear, throat, nose and larynx magazine, (2006), 147-154.
  31. Ball, C.G.; Uddin, M.; Pollard, A. High resolution turbulence modelling of airflow in an idealised human extra-thoracic airway. Comput. Fluids 2008, 37, 943–964.