The formation process of nanocrystalline permalloy by electroplating and optimization the surface conditions for alloy coatings

Authors

Abstract

Permalloy (80%wt. Ni, 20%wt Fe) coatings were electroplated in 25°C by applying current density of 100 mA/cm2 in a bath with the pH of 3.8. A mechanical stirrer (160 RPM) was used during 8 hours electroplating. Saccharin was used as a stress reducing agent and a grain refiner to gain nanocrystalline coatings. The pH of plating was controlled by boric acid as a buffer. The SEM images of surface of coatings indicated the different processes of forming the cauliflower structure including nucleation, three dimension growth and integration of crystals. To study the effects of different parameters on the roughness of coatings, various temperatures (25, 45, 75°C), different times (3, 8 hours), different amounts of saccharin in the bath (10, 5, 3, 1g/L) and two different types of agitation (magnetic and mechanic stirrer) were investigated. The results of roughness test showed that decreasing the plating time and the amount of saccharin in the bath decrease the surface roughness. In addition, increasing the temperature and using magnetic stirrer caused a decline in the surface roughness. Increasing the temperature would also change the alloy composition.

Keywords


  1. W. Matthew, J. Losey, J. Kelly, “Electrodeposition”, Comprehensive Microsystems, Volume 1, pp. 271–292, 2008.
  2. D. Jiles, "Introduction to Magnetism and Magnetic Materials", CRC Press. pp. 354, 1998.
  3. W. Blum, G.B. Hogaboom. “Principle of  electroplating and electroforming”, Vol. 3,  pp. 356-382, McGraw-Hill Book Company, Inc, New York, Toronto, London, 1949.        
  4. T. Hart, A. Watson, “Metal Finishing”, Vol. 100, Supplement 1, pp. 257-274, 2002.          
  5. R. Abdel-Karim, Y. Reda, M. Muhammed, S. El-Raghy, M. Shoeib,  H. Ahmed, "Electrodeposition and Characterization of Nanocrystalline Ni-Fe Alloys", Journal of Nanomaterials, Volume 2011, pp. 921-929, 2011. 
  6. S. Park, D.G. Senesky, A.P. Pisano, "Electrodeposition of permalloy in deep silicon trenches without edge-overgrowth utilizing dry film photoresist", Micro Electro Mechanical Systems, Volume 45, pp. 689 – 692, 2009.
  7. S. Glasstone, “The cathodic behavior of alloys. I. Iron-nickle alloys”, Trans. Faraday Soc. 19, pp.574-583, 1924.  
  8. E. Raub, E. Walter, “Galvanische Nickel-Eisen-Niederschlage”, Mitt. Forforschungsinst, Vol. 9, pp. 17-21, 1935.  
  9. B.Raub, E. Walter, “GalvanischeNiederschlage von Nickel-Eisen-Legierungen”, Z. Elektrochem. Vol. 14, pp. 169, 1935.      
  10. B. Raub, “Der Einflass von ZusatzenzuNickelbadern auf die Schadlichkeit des Eisens, Mitt. Forschungsinst. Vol. 9, pp. 1-8, 1935. 
  11. V. Sree,T.L. Rama Char, “Electrodeposition of nickel- iron and nickel-cobalt alloys from the pyrophosphate bath”, Bull. Idia Sect. Electrochem. VOL. 7. pp. 3, 72-75, 1958.    
  12. A. Brenner, “Electrodeposition of alloys”, Vol. 2, pp. 265-2778, Academic Press, New York and London, 1963.  
  13. S.D. Leith, S. Ramli and D.T. Schwartz, Characterization of NixFe1-x (0.1≤x≤0.95) electrodeposition from a family of sulfamate chloride electrolytes, J. Electrochem. Soc., Vol. 146, pp. 1431-35, 1999.
  14. J. Simonet, “The Platinised Platinum Interface Under Cathodic Polarisation”, Platinum Metals Rev., Vol. 50, no. 4, 2006.    
  15. A. Afshar, A.G. Dolati, M. Ghorbani, “Electrochemical characterization of the Ni–Fe alloy electrodeposition from chloride–citrate–glycolic acid solutions”, Materials Chemistry and Physics, Vol. 77, PP. 352–358, 2003.    
  16. A.M. Rashidi, A. Amadeh, “The effect of saccharin addition and bath temperature on the grain size of nanocrystalline nickel coatings”, Surface and Coatings Technology, Vol. 204, pp. 353-358, 2009.
  17. E. Moti, M.H. Shariat, M.E. Bahrololoom, “Electrodeposition of Nanocrystalline Nickel by using Rotating Cylindical Electrodes”, Materials Chemistry and Physics, Vol. 111, pp. 469-474, 2008.