References:
1- G.R. Johnson and W.H. Cook, “A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures”, In: Proceedings of the 7th international symposium on
ballistics, pp. 541–543, 1983.
2- E. Voce, “The relationship between stress and strain for homogeneous deformation”, Journal of the Institute of Metals, Vol. 74, pp. 537–562, 1948.
3-A.S. Khan and S. Huang, “Experimental and theoretical study of mechanical behavior of 1100 aluminum in the strain rate range 10−5− 104 s−1”, International Journal of Plasticity, Vol. 8, pp. 397–424, 1992.
4- H. Mirzadeh and A. Najafizadeh, “Flow stress prediction at hot working conditions”, Materials Science and Engineering A, Vol. 527, pp. 1160–1164, 2010.
5- K. Peng, H. Zhong, L. Zhao, K. Xue and Y. Ji, “Strip shape modeling and its setup strategy in hot strip mill process”, The International Journal of Advanced Manufacturing Technology, Vol. 72, pp. 589–605, 2014.
6-M.Y. Zhan, Z. Chen, H. Zhang and W. Xia, “Flow stress behavior of porous FVS0812 aluminumalloy during hot-compression”, Mechanics Research Communications, Vol. 33, pp. 508–514, 2006.
7- Y.C. Lin and X.M. Chen, “A critical review of experimental results and constitutive descriptions for metals and alloys in hot working”, Materials & Design, Vol. 32, pp. 1733–1759, 2011.
8-H. Shi, A.J. McLaren, C.M. Sellars, R. Shahani and R. Bolingbroke, “Constitutive equations for high temperature flow stress
of aluminium alloys”, Journal of Materials Science and Technology, Vol. 13, pp. 210–216, 1997.
9- M. Rakhshkhorshid, “Modeling the hot deformation flow curves of API X65 pipeline steel”, The International Journal of Advanced Manufacturing Technology, Vol. 77, pp. 203–210, 2015.
10- P.J. Zerilli and R.W. Armstrong, “Dislocation-mechanics-based constitutive relations for material dynamics calculations”, Journal of Applied Physics, Vol. 61, pp. 1816–1825, 1987.
11- Y.C. Lin, M.S. Chen and J. Zhang, “Constitutive modeling for elevated temperature flow behavior of 42CrMo steel”, Computational Materials Science, Vol. 424, pp. 470–477, 2008.
12- G.Z. Voyiadjis and A.H. Almasri, “A physically based constitutive model for fcc metals with applications to dynamic hardness”, Mechanics of Materials, Vol. 40, pp. 549–563, 2008.
13-N. Haghdadi, A. Zarei-Hanzaki, A.R. Khalesian and H.R. Abedi, “Artificial neural network modeling to predict the hot deformation behavior of an A356 aluminum alloy”, Materials & Design, Vol. 49, pp. 386-391, 2013.
14- V. Senthilkumar, A. Balaji and D. Arulkirubakaran, “Application of constitutive and neural network models for prediction of high temperature flow behavior of Al/Mg based nanocomposite”, Transactions of Nonferrous Metals Society of China, Vol. 23, pp. 1737-1750, 2013.
15-Y. Zhu, W. Zeng, Y. Sun, F. Feng and Y. Zhou, “Artificial neural network approach to predict the flow stress in the isothermal compression of as-cast TC21 titanium alloy”. Computational Materials Science, Vol. 50, pp.1785–1790, 2011.
16- M.Y. Zhan, Z. Chen, H. Zhang and W. Xia, “Flow stress behavior of porous FVS0812 aluminum alloy during hot-compression”, Mechanics Research Communications, Vol. 33, pp. 508–514, 2006.
17- J. Cai, F. Li, T. Liu, B. Chen and M. He, Constitutive equations for elevated temperature flow stress of Ti–6Al–4V alloy considering the effect of strain,
Vol. 32, No. 3, pp. 1144–1151, 2011.
18- R. Ebrahimi, S. H. Zahiri, and A.Najafizadeh, Mathematical Modeling of the Stress-Strain Curves of Ti-IF Steel at High Temperature, Journal of Materials Processing Technology, Vol. 171, pp. 301-305, 2006.
19- س.غ.ح. حسنی و ر. محمودی، معادله بنیادی تغییرشکل گرم ورق منیزیمی Mg-4Sn-1Ca، مجله مواد نوین، دوره 5، شماره 2، ص 1-10، زمستان 93.
20- س.ح. هاشمی و م. رخش خورشید، "بررسی اثر ترکیب شیمیایی بر خواص مکانیکی فولاد میکروآلیاژی گرید API X65"، نشریه علوم کاربردی و محاسباتی در مکانیک، سال 23، شماره 2، ص 47-64، بهار و تابستان 91.
21- م. رخش خورشید و س.ح. هاشمی، "بررسی اثر سرد کردن بر رفتار استحاله تبرید پیوسته در فولاد خط لوله API X65"، مجله مهندسی مکانیک مدرس، دورۀ 13، شمارة 8، ص 57-67، آبان 92.
22- م. رخش خورشید، س.ح. هاشمی و ح. مناجاتی زاده، "استفاده از آزمون پیچش گرم جهت تعیین تجربی دماهای بحرانی فولاد ایکس شصت و پنج"، مجله مهندسی مکانیک مدرس، دورۀ 14، شمارة 13، ص 291-296، فوق العاده، اسفند 93.
23- M. Rakhshkhorshid and S.H. Hashemi, “Experimental study of hot deformation behavior in API X65 steel”, Materials Science & Engineering A, Vol. 573, pp 37–44, 2013.
24- M. Shaban and B. Eghbali, “Determination of critical conditions for dynamic recrystallization of a microalloyed steel”, Materials Science & Engineering A, Vol. 527, pp. 4320–4325, 2010.