Modeling the hot deformation flow curves of API X65 pipeline steel using the exponential law equation

Document Type : Research Paper

Author

Abstract

Different constitutive models are used to model the hot deformation flow curves of different materials. In this research, the hot deformation flow stress of API X65 pipeline steel was modeled using the exponential law equation with strain dependent constants. The results of this model were compared with the results of a model which has recently been developed based on a power function of Zener-Hollomon parameter and a third order polynomial function of strain to power of m (m is a constant)). Root mean square error (RMSE) criterion was used for this purpose. It was found that the he exponential law equation with strain dependent constants has a better performance (lower RMSE) to model the hot deformation flow curves of API X65 pipeline steel. The results can be used further for mathematical simulation of hot deformation processes.

Keywords


References:
1- G.R. Johnson and W.H. Cook, “A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures”, In: Proceedings of the 7th international symposium on
 ballistics, pp. 541–543, 1983.
2- E. Voce, “The relationship between stress and strain for homogeneous deformation”, Journal of the Institute of Metals, Vol. 74, pp. 537–562, 1948.
3-A.S. Khan and S. Huang, “Experimental and theoretical study of mechanical behavior of 1100 aluminum in the strain rate range 10−5− 104 s−1”, International Journal of Plasticity, Vol. 8, pp. 397–424, 1992.
4- H. Mirzadeh and A. Najafizadeh, “Flow stress prediction at hot working conditions”, Materials Science and Engineering A, Vol. 527, pp. 1160–1164, 2010.
5- K. Peng, H. Zhong, L. Zhao, K. Xue and Y. Ji, “Strip shape modeling and its setup strategy in hot strip mill process”, The International Journal of Advanced Manufacturing Technology, Vol. 72, pp. 589–605, 2014.
6-M.Y. Zhan, Z. Chen, H. Zhang and W. Xia, “Flow stress behavior of porous FVS0812 aluminumalloy during hot-compression”, Mechanics Research Communications, Vol. 33, pp. 508–514, 2006.
7- Y.C. Lin and X.M. Chen, “A critical review of experimental results and constitutive descriptions for metals and alloys in hot working”, Materials & Design, Vol. 32, pp. 1733–1759, 2011.
8-H. Shi, A.J. McLaren, C.M. Sellars, R. Shahani and R. Bolingbroke, “Constitutive equations for high temperature flow stress
of aluminium alloys”, Journal of Materials Science and Technology, Vol. 13, pp. 210–216, 1997.
9- M. Rakhshkhorshid, “Modeling the hot deformation flow curves of API X65 pipeline steel”, The International Journal of Advanced Manufacturing Technology,  Vol. 77, pp. 203–210, 2015.
10- P.J. Zerilli and R.W. Armstrong, “Dislocation-mechanics-based constitutive relations for material dynamics calculations”, Journal of Applied Physics, Vol. 61, pp. 1816–1825, 1987.
11- Y.C. Lin, M.S. Chen and J. Zhang, “Constitutive modeling for elevated temperature flow behavior of 42CrMo steel”, Computational Materials Science, Vol. 424, pp. 470–477, 2008.
12- G.Z. Voyiadjis and A.H. Almasri, “A physically based constitutive model for fcc metals with applications to dynamic hardness”, Mechanics of Materials, Vol. 40, pp. 549–563, 2008.
13-N. Haghdadi, A. Zarei-Hanzaki, A.R. Khalesian and H.R. Abedi, “Artificial neural network modeling to predict the hot deformation behavior of an A356 aluminum alloy”, Materials & Design, Vol. 49, pp. 386-391, 2013.
14- V. Senthilkumar, A. Balaji and D. Arulkirubakaran, “Application of constitutive and neural network models for prediction of high temperature flow behavior of Al/Mg based nanocomposite”, Transactions of Nonferrous Metals Society of China, Vol. 23, pp. 1737-1750, 2013.
15-Y. Zhu, W. Zeng, Y. Sun, F. Feng and Y. Zhou, “Artificial neural network approach to predict the flow stress in the isothermal compression of as-cast TC21 titanium alloy”. Computational Materials Science, Vol. 50, pp.1785–1790, 2011.
16- M.Y. Zhan, Z. Chen, H. Zhang and W. Xia, “Flow stress behavior of porous FVS0812 aluminum alloy during hot-compression”, Mechanics Research Communications, Vol. 33, pp. 508–514, 2006.
17- J. Cai, F. Li, T. Liu, B. Chen and M. He, Constitutive equations for elevated temperature flow stress of Ti–6Al–4V alloy considering the effect of strain, Vol. 32, No. 3, pp. 1144–1151, 2011.
18- R. Ebrahimi, S. H. Zahiri, and A.Najafizadeh, Mathematical Modeling of the Stress-Strain Curves of Ti-IF Steel at High Temperature, Journal of Materials Processing Technology, Vol. 171, pp. 301-305, 2006.
19- س.غ.ح. حسنی و ر. محمودی، معادله بنیادی تغییرشکل گرم ورق منیزیمی Mg-4Sn-1Ca، مجله مواد نوین، دوره 5، شماره 2، ص 1-10، زمستان 93.
20- س.ح. هاشمی و م. رخش خورشید، "بررسی اثر ترکیب شیمیایی بر خواص مکانیکی فولاد میکروآلیاژی گرید API X65"، نشریه علوم کاربردی و محاسباتی در مکانیک، سال 23، شماره 2، ص 47-64، بهار و تابستان 91.
21- م. رخش خورشید و س.ح. هاشمی، "بررسی اثر سرد کردن بر رفتار استحاله تبرید پیوسته در فولاد خط لوله API X65"، مجله مهندسی مکانیک مدرس، دورۀ 13، شمارة 8، ص 57-67، آبان 92.
22- م. رخش خورشید، س.ح. هاشمی و ح. مناجاتی زاده، "استفاده از آزمون پیچش گرم جهت تعیین تجربی دماهای بحرانی فولاد ایکس شصت و پنج"، مجله مهندسی مکانیک مدرس، دورۀ 14، شمارة 13، ص 291-296، فوق العاده، اسفند 93.
23- M. Rakhshkhorshid  and S.H. Hashemi, “Experimental study of hot deformation behavior in API X65 steel”, Materials Science & Engineering A, Vol. 573, pp 37–44, 2013.
24- M. Shaban and B. Eghbali, “Determination of critical conditions for dynamic recrystallization of a microalloyed steel”, Materials Science & Engineering A,  Vol. 527, pp. 4320–4325, 2010.