Dielectric Properties of Multiferroic Composite Consisting Lithium Ferrite and Bismuth Titanate Synthesized by Combustion Method

Document Type : Research Paper

Authors

MSc. in materials science and engineering/Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University

Abstract

In this work, lithium ferrite and bismuth titanate have been synthesized to fabricate a multiferroic composite by microwave-induced combustion method. Multiferroic composites with the formula  (where x=0, 0.1, 0.3, 0.5, 0.7, 0.9, 1) were prepared. X-ray diffraction patterns showed that perovskite structure of bismuth titanate and spinel structure of lithium ferrite have been formed successfully in the as-synthesized nanostructured powders. Dielectric properties were examined by a LCR meter. Multiferroic composites containing the higher content of Li ferrite (70 wt % and 90 wt% Li ferrite), in comparison to the pure bismuth titanate and Li ferrite, indicate higher values of dielectric constant. In bismuth titanate and the composite with 10 wt% Li ferrite, dielectric constant remains constant as the frequency changes; in contrast, this character decreases significantly with frequency for Li ferrites and the other composites in such a way in Li ferrite, dielectric constant decreases from 8500 at 100 Hz to 180 at 1 MHz. Some dielectric peaks are observed in the dielectric constant vs. temperature plots which more or less shift to the higher temperatures as the bismuth titanate increases. For instance, the maximum dielectric constant of 2250 is observed at 25 ºC for Li ferrite; nevertheless, the maximum value of 5990 is found at 400 ºC for sample containing 70 wt% bismuth titanate.

Keywords


1- R. Grigalaitis, M. V. Petrović, J. D. Bobić, A. Dzunuzovic, R. Sobiestianskas,  A. Brilingas, ... & J. Banys, "Dielectric and magnetic properties of BaTiO3–NiFe2O4 multiferroic composites", Ceramics International, 40(4), pp. 6165-6170, (2014).
 
2- P. Pahuja, R. Sharma, C. Prakash, & R. P. Tandon, "Synthesis and characterization
 



of­ Ni0.8Co0.2Fe2O4–Ba0.95Sr0.05TiO3    multiferroic composites", Ceramics
International, 39(8), pp. 9435-9445, (2013). 
 
3- R. Pandey, B. R. Meena, & A. K. Singh, "Structural and dielectric characterization on multiferroic xNi0.9Zn0.1Fe2O4/(1−x) PbZr0.52Ti0.48O3 particulate composite", Journal of Alloys and Compounds, 593, pp. 224-229, (2014).
4- M. Fiebig, "Revival of the magnetoelectric effect", Journal of Physics D: Applied Physics, 38(8), R123, (2005).
5- K. C. Verma, S. Singh, S. K. Tripathi, & R. K. Kotnala, "Multiferroic Ni0.6Zn0.4Fe2O4-BaTiO3 nanostructures: Magnetoelectric  coupling, dielectric, and fluorescence. Journal of Applied Physics, 116(12), 124103, (2014).     
6- V. R. Palkar, D. C. Kundaliya, S. K. Malik, &  S. Bhattacharya, " Magnetoelectricity at room temperature in the Bi0.9− xTbxLa0.1FeO3 system", Physical Review B, 69(21), 212102, (2004).  
7- A. Manikandan, J. J. Vijaya, L.J. Kennedy, &  M. Bououdina, " Structural, optical and magnetic properties of Zn1−xCuxFe2O4 nanoparticles prepared by microwave combustion method", Journal of Molecular Structure, 1035, pp. 332-340, (2013).
 
8- A. Testino, L. Mitoseriu, V. Buscaglia, M. T. Buscaglia, I. Pallecchi, A. S. Albuquerque, …& P. Nanni, " Preparation of multiferroic composites of BaTiO3–Ni0.5Zn0.5Fe2O4 ceramics",Journal of the European Ceramic Society, 26(14), pp. 3031-3036, (2006).        
9- M. V. Ramanaa, N. Ramamanohar,N. R. Reddy, G. Sreenivasulu, B. S. Murty, & V. R. K. Murthy, "Enhanced mangnetoelectric voltage in multiferroicparticulate Ni0.83Co0.15Cu0.02Fe1.9O4−δ/PbZr0.52Ti0.48O3 composites–dielectric, piezoelectric and magnetic properties", Current Applied Physics, 9(5), pp 1134-1139, (2009).  
 
10 D. K. Pradhan, R. N. P. Chowdhury, & T. K. Nath, "Magnetoelectric properties of­ PbZr0.53Ti0.47O3–Ni0.65Zn0.35Fe2O4 multiferroic nanocomposites",  Applied Nanoscience, 2(3), pp. 261-273, (2012).
 
11- N. Borhan, & K. Gheisari, "Structural and Magnetic Properties of Nanocrystalline Lithium–Zinc Ferrite Synthesized by Microwave-Induced Glycine–Nitrate Process", Journal of Superconductivity and Novel Magnetism, 27, pp. 1483–1490, (2014).
12- O. Subohi, G. S. Kumar, M. M. Malik, & R.  Kurchania, " Synthesis of bismuth titanate with urea as fuel by solution combustion route and its dielectric and ferroelectric properties", Optik-International Journal for Light and Electron Optics, 125(2), pp. 820-823, (2014).
13- P. Y. Goh, K. A. Razak, & S. Sreekantan, " Structural and morphology studies of praseodymium-doped bismuth titanate prepared using a wet chemical route",  Journal of Alloys and Compounds, 475(1), pp. 758-761, (2009).  
 
14- M. Sedlar, & M. Sayer, " Structural and electrical properties of ferroelectric bismuth titanate thin films prepared by the sol gel method", Ceramics International, 22(3), pp. 241-247., (1996).           
15- S. H. Hong, S. Trolier‐McKinstry, & G. L. Messing, "Dielectric and Electromechanical Properties of Textured Niobium‐Doped Bismuth Titanate Ceramics", Journal of the American Ceramic Society, 83(1), pp. 113-118, (2000).
 
16- P. Thiruramanathan, A. Marikani, D. Madhavan, S. Bharadwaj, & A. M. Awasthi,  " Influence of calcination temperature on sol–gel synthesized single-phase bismuth titanate for high dielectric capacitor applications", International Journal of Materials Research, 107(5), pp. 484-492, (2016).   
17- I. Soibam, S. Phanjoubam, H. B. Sharma,  H. N. K. Sarma, & C. Prakash, " Magnetic studies of Li–Zn ferrites prepared by citrate precursor method", Physica B: Condensed Matter, 404(21), pp. 3839-3841, (2009).   
 
18-  S. Sutradhar, S. Pati, S.  Acharya, S. Das, D.  Das, & P. K.  Chakrabarti, "Sol–gel derived nanoparticles of Zn  substituted lithium ferrite (Li0.32Zn0.36Fe2.32O4):  magnetic and Mössbauer effect measurements and their theoretical analysis", Journal of Magnetism and Magnetic Materials, 324(7), pp. 1317-1325, (2012).  
   
19- Y. P. Fu, " Microwave-induced combustion synthesis of Li0.5Fe2.5− xCrxO4 powder and their characterization", Materials Research Bulletin, 41(4), pp. 809-816, (2006).      
 
20 -S. Hajarpour, Kh. Gheisari, & A.Honarbakhsh Raouf, Characterization of nanocrystalline Mg0.6Zn0.4Fe2O4 soft ferrites synthesized by glycine-nitrate combustion process, Journal of Magnetism and Magnetic Materials, 329, pp 165–169, (2013).
21- N. Singh, A. Agarwal, & S. Sanghi, ''Dielectric relaxation, conductivity behavior and magnetic properties of Mg substituted Zn–Li ferrites'', Journal of Alloys and Compounds, 509, pp 7543–7548, (2011).         
22- T. Hussain, S. A. Siddiqi, S. Atiq, & M.S. Awan, '' Induced modify­cations in the properties of Sr doped BiFeO3 multiferroics'', Materials  International, 23, pp 487-492, (2013).      
23- R. Sharma, P. Pahuja, & R.P. Tandon, ''Structural, dielectric, ferromagnetic, ferroelectric and ac conductivity studies of the BaTiO3–CoFe1.8Zn0.2O4 multiferroic particulate composites'', Ceramics International, 40(7-A), pp 9027-9036, (2014).
 
24- J.D. Livingston, ''Electronic properties of engineering materials'', Wiley, Inc., New York (1999).        
25- Z. Maleknejad, Kh. Gheisari, & A. Honarbakhsh Raouf, Structure, Microstructure, ''Magnetic, Electromagnetic, and Dielectric Properties of Nanostructured Mn–Zn Ferrite Synthesized by Microwave-Induced Urea–Nitrate Process'', Journal of Superconductivity and Novel Magnetism, 29, pp 2523-2534, (2016). 
26- R. Wongmaneerung, J. Padchasri, R. Tipakontitikul, H. Loan,  P. Jantaratana,… & S. Ananta, Phase formation, ''dielectric and magnetic properties of bismuth ferrite–lead magnesium niobate multiferroic composites'', Journal of Alloys and Compounds, 608, pp 1–7, (2014).