Production of Open Cell Copper Foam and assessment of foam Substructure

Document Type : Research Paper

Authors

faculty member

Abstract

    The aim of this study is to provide a method of making ultralight open cell copper foam with high surface area using chemical procedures. Among the various methods of making open-cell metal foams, electrodeposition method is selected because it can be done in a clean way and is cheaper than other methods. In this method, an open cell polyurethane sponge was used as substrate. Then by choosing appropriate chemical solutions with specific technical knowledge, first polyurethane surface has activated and then by electroless-deposition method, polyurethane activated surface covered with a thin layer of copper. In the final stage, with the aid of electrodeposition the thickness of copper layer was increased to the desired thickness with a minimum required strength. The results show that electrodeposition can increase the thickness of copper layer from3-5 microns that is obtained in electroless-deposition method to above100 to 150 microns. SEM results show that the micro structure of the deposited layer is globular. By controlling the thickness of deposited copper in electroplating, the surface area of the copper foam can be increased. According to results optimum time for electroless-deposition is between 5 to 7 minutes and for electrodeposition is 1 hour. The open-cell copper foam that is produced in this research is ultralight and due to it high surface can transfer heat with high rates.

Keywords


References: 1- C. Berberidou, I. Pouliso, N.P Xekoukoulotakis, D. Mantavirinos, "Photocatalytic and sonophotocatalytic degradation of malachite green in aqueous solutions", Catalysis B: Environmental, 74, 63–72, 2007.
2- T. Sauer, G. Cesconeto Neto, H. J. José, "Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor", Photochem. Photobiol, A., 149, 147–154, 2002.
3- B. Cui, H. Peng, H. Xia, X. Guo and H. Guo, "Magnetically recoverable core–shell nanocomposites γ-Fe2O3@SiO2@TiO2–Ag with enhanced photocatalytic activity and antibacterial activity", Separation and Purification Technology, 103, pp.251-257, 2013.
4- Y. Chi, Q. Yuan, Y. Li, L. Zhao, N. Li, X. Li, and W. Yan, "Magnetically separable Fe3O4@SiO2@TiO2-Ag microspheres with well-designed nanostructure and enhanced photocatalytic activity", Journal of hazardous materials, 262, pp.404-411, 2013.
5- R. Y. Hong, S. Z. Zhang, G. Q. Di, H. Z. Li, Y. Zheng, J. Ding and D. G. Wei, "Preparation, characterization and application of Fe3O4/ZnO core/shell magnetic nanoparticles", Materials Research Bulletin, 43(8), pp.2457-2468, 2008.
6- A. Sáenz-Trevizo, P. Amézaga-Madrid, P. Pizá-Ruiz, W. Antúnez-Flores, C. Ornelas-Gutiérrez and M. Miki-Yoshida, "Efficient and durable ZnO core-shell structures for photocatalytic applications in aqueous media", Materials Science in Semiconductor Processing, 45, pp.57-68, 2016.
7- X. Feng, H. Guo, K. Patel, H. Zhou, and X. Lou, "High performance, recoverable Fe3O4 ZnO nanoparticles for enhanced photocatalytic degradation of phenol", Chemical Engineering Journal, 244, pp.327-334, 2014.
8- J. Wan, H. Li and K. Chen, "Synthesis and characterization of Fe3O4@ ZnO core–shell structured nanoparticles", Materials Chemistry and Physics, 114(1), pp.30-32, 2009.
9- W. Li, G. Wang, C. Chen, J. Liao and Z. Li, "Enhanced visible light photocatalytic activity of ZnO nanowires doped with Mn2+ and Co2+ ions", Nanomaterials, 7(1), p.20, 2017.
10- P. Boule, D. W. Bahnemann, P. K. J. Roberlsom, "The Handbook of environment chemistry, environmental photochemistry part II", part M, springer- verlag, Berlin Heidelberg, Germany 2, 2005.
-11 ع. دوستتتتی، ب. شتتتتایق بروجای و ر. ابراهیمی
کهریزستتتاگی، "اثر افزایش اکستتتید تاگستتتتن بر رواص
حااظت فوتوکاتدی پوشتتشهای تیتانیایی تهیه شتتده به
روش ستتل- ژل"، غجله غواد نوین، جلد 2، شتتماره 3، ص
. 123-138 ، بهار 1338
12- M. Salehi, H. Hashemipour, M. Mirzaee, "Experimental study of influencing factors and kinetics in catalytic removal of methylene blue with TiO2 nanopowder"’, American journal of environmental engineering 2, 1-7, 2012.
13- J. A. Byrne, B. R. Eggins, N. M. D. Brown, B. McKinney, M. Rouse, "Immobilisation of TiO2 powder for the treatment of polluted water", Environmental 17, 25-36, 1998.
14- X. Chen, C. Li, J. Wang , J. Li, X. Luan, Y. Li, R. Xu, B. Wang, "Investigation on
683 مجله مواد نوین/ جلد 8/شماره 2/ پاییز 6931
solar photocatalytic activity of TiO2 loaded composite: TiO2/Eggshell, TiO2/Clamshell and TiO2/CaCO3", Materials Letters 64 , 1437–1440, 2010.
15- A .Haarstrick , O. M. Kut , and E .
Heinzle ,"TiO2-Assisted Degradation of Environmentally Relevant Organic Compounds in Wastewater Using a Novel Fluidized Bed Photoreactor", Environ. Sci. Technol, 30, 817-824, 1996.
16- R. Ghosh Chaudhuri, S. Paria, "Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications", Chem Rev 112, 2373-2433, 2012.
17- D. Beydoun and R. Amal," Novel Photocatalyst: Titania-Coated Magnetite. Activity and Photodissolution", J. Phys. Chem. B, 104, 4387-4396, 2000.
18- J. Wanga, J. Yangc, X. Li , B. Wei, D. Wanga, H. Songa, H. Zhaic, X. Li, "Synthesis of Fe3O4@SiO2@ZnO–Ag core–shell microspheres for the repeated photocatalytic degradation of rhodamine B under UV irradiation", Molecular Catalysis A: Chemical 406 97–105, 2015.
19- J-W. Lee, K. Hong, W-S. Kim, J. Kim, "Effect of HPC concentration and ultrasonic dispersion on the morphology of titania-coated silica particles", Journal of Industrial and Engineering Chemistry 11, 609-614, 2005.
20- J. Zou, Y. G. Peng, and Y. Y. Tang, "A facile bi-phase synthesis of Fe3O4@SiO2 core–shell nanoparticles with tunable film thicknesses", RSC Advances, 4(19), pp.9693-9700, 2014.
21- Y. Deng, D. Qi, C. Deng, X. Zhang and D. Zhao, "Superparamagnetic high-magnetization microspheres with an Fe3O4@ SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins", Journal of the American Chemical Society, 130(1), pp.28-29, 2008.
22- Z. Wang, L. Shen, S. Zhu, "Synthesis of Core-Shell@@ Microspheres and Their Application as Recyclable Photocatalysts", Int ernational Journal of Photoenergy, 2012.
23- D. Beydoun, R. Amal, G. Low and S. McEvoy, "Occurrence and prevention of photodissolution at the phase junction of magnetite and titanium dioxide", Journal of Molecular Catalysis A: Chemical, 180(1), pp.193-200, 2002.
24- J. Li, L. Gao, Q. Zhang, R. Feng, H. Xu, J. Wang, D. Sun, and C. Xue, "Photocatalytic Property of Fe3O4/SiO2/TiO2 Core-Shell Nanoparticle with Different Functional Layer Thicknesses",10.1155/986809, 2014.
25- H.Osman, Z.Su, X. Ma, S.Liu, X.Liu, D. Abduwayit, “Synthesis of ZnO/C nano-composites with enhanced visible light photocatalytic activity”, Ceram. Int., 42, 10237–10241, 2016.
26- X. Huang, G. Wang, M. Yang, W. Guo, H. Gao, "Synthesis of polyaniline-modified Fe3O4/SiO2/TiO2 composite microspheres and their photocatalytic application", Materials Letters 65, 2887-2890, 2011.
133 بررسی اثر غلظت وانادیوم بر خواص اپتیکی و الکتریکی لایه نازک نانو ساختار دی اکسید تیتانیوم ...