Assessment of plastic deformation of the A356 foam sandwich panel during compression and bending tests

Document Type : Research Paper

Authors

1 کارشناس ارشد، دانشگاه صنعتی امیرکبیر تهران، دانشکده مهندسی مواد و متالورژی.

2 Asso.pfrof./ amirkabir university

Abstract

In present study closed cell aluminum A356 metal foam used as sandwich panel core with aluminum surface sheets. Then the uniaxial compressive plastic behavior and three-point bending behavior of foam slab and sandwich panel were studied. According to force-cross head displacement curves of compressive and three-point bending tests, the absorbed compressive and bending energy were calculated and by analyzing structure and metallography of cell walls, the deformation mechanism was estimated. Foam’s structure; in compressive test; showed same crushing behavior of cell walls for foam slabs and sandwich panels. However, sandwich panels showed two different behaviors due to core structure of foam in three-point bending test. First one was plastic hinges and U shape bending, around compression mandrel in three-point bending test and the other one was tearing of bottom face sheet of sandwich panel. Hence the absorption energy of sandwich panel and slab foams were calculated. The results show that sandwich panel and slab foam have almost same compressive strength. Also sandwich panel bending strength was 5.3 times greater than slab foam. However, absorbed energy in the longitudinal plastic deformation up to 7.38 % strain for slab foam was greater than sandwich panel. However, characteristic absorb energy during three-point bending test and according to disruption of panel structure mode showed that sandwich panel failure with plastic hinges had higher characteristic absorption energy.

Keywords


References:
1- M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson and H.N.G.
Wadley, “Metal Foams: A Design Guide”, Butterworth-Heinemann,2000.
2 م. شاهسون، س.م.ح. میرباقری، ساخت فوم سلول باز -
مسی و بررسی ریزساختار آن، مجله علمی پژوهشی مواد
نوین، جلد 8 شماره 3 ، 1397 .
3- L.J. Gibson, M.F. Ashby, “Cellular Solids: Structure and Properties”,
Butterworth-Heinemann, 2ndedition, Cambridge University Press,1999.
4- M. Maurer, E. Lugscheider, Matewiss. Werkstofftechn., No:31, P:523, 2000 .
5- K. Kabir, T. Vodenitcharova, Hoffman M. Response of aluminum foam-cored sandwich panels to bending load. Composites Part B: Engineering., Aug 1; 64:24-32, 2014.
143 مجله مواد نوین/ جلد 9/شماره 3 / بهار 1398
6- Zu GY, Lu RH, Li XB, Zhong ZY, HAN MB, YAO GC. Three-point bending behavior of aluminum foam sandwich with steel panel. Transactions of Nonferrous Metals Society of Chin, Sep 1;23(9):2491-5, 2013.
7 م گلستانی پور - ، ا. باباخانی، س .م. زبرجد، بررسی و
شبیه سازی آزمون سوراخ کاری شبه استاتیک در پنل
های ساندویچی با هسته فوم کامپوزیتی Al A356/SiCp فصلنامه مواد نوین، زمستان 1394 ، دوره
6، شماره 2 )پیاپی 22 (، صفحه 13 - 28.
8- S.M.H. Mirbagheri, H. Vali, H. Soltani, Heat Treatment of Closed-Cell A356+ 4 wt.% Cu+2 wt.%Ca Foam and Its Effect on the Foam Mechanical Behavior, Volume 26, Issue 1, pp.14-27, 2017.
9-M. Nouri-Damghani, A. Mohammadzadeh Gonabadi, “Investigation of Energy Absorption in Aluminum Foam Sandwich Panels: By Drop Hammer Test: Experimental Results” Mechanics, Materials Science & Engineering, December 2016–ISSN 2412-5954.
10- H. Bayani, S.M.H. Mirbagheri, Strain-hardening during compression of closed-cell Al/Si/SiC+(TiB2& Mg) foam, pp:168–179, 2016.
11- R. Florek, F. Simančík et al. compression test evaluation method for aluminum foam different alloys and densities, Powder Metallurgy Progress, No 4, Vol.10 (2010).
12 س. مکرتیچیانس، ساخت و ارزیابی رفتار تغییر -
شکل ساندویچ پانل فوم آلومینیم در آزمون خمش سه
نقطه، پایان نامه کارشناسی ارشد مواد، دانشگاه صنعتی
امیرکبیر، 1397 .
13 س. م. ح. میرباقری، ح. سلطان؛ ح. والی، "تعیین -
سیکل عملیات پیرسازی فوم کامپوزیتی پایه آلومینیم
A356+4%wt.Cu و مقایسه آن با خواص مکانیکی
فوم A356 ، فصلنامه مواد نوین، دوره 6 ، شماره 1)پیاپی
21 (، پاییز 1394 ، صفحه 37 - 52 .
14- J.L. Yu, X. Wang, Z.G. Wei, et al., Deformation and failure mechanism of dynamically loaded sandwich beams with aluminum-foam core. Int. J Impact Eng., 28(3), 2003, pp:331-347. 15- Z.P. Bazant, Y. Zhou, I.M. Daniel, et al., Size effect on strength of laminate-foam sandwich plates. J Eng. Mater Tech, 128(3), 2006, pp:366-374. 16- C. Tekoglu, L.J. Gibson, T. Pardoen, etal,. Size effects in foams: experiments and modeling Prog. Mater Sci., 56(2), 2011, pp:109-138.