Microbial Corrosion in Cooling Water of Lushan Shahid Beheshti Power Plant

Document Type : Research Paper

Authors

1 Assistant Professor, Chemistry and Process Engineering Department, Niroo Research Institute, Tehran, Iran

2 Lab. Technician, Chemical and Process Engineering Department, Niroo Research Institute, Tehran, Iran.

3 Assistant Professor, Chemistry and Process Engineering Department, Niroo Research Institute, Tehran, Iran.

Abstract

Abstract
The corrosion and especially microbial corrosion in thermal power plants due to the frequent use of contaminated water sources has long been a source of economic problems, efficiency reduction, equipment and technical failure. The main reasons of these problems are a of existence of microbial organism in the water of cooling tower. In this work, the aim is to collect information on the microbial corrosion in the cooling water of Shahid Beheshti power plant of Lushan and to provide several solutions to reduce the occurrence of microbial corrosion Therefore, physicochemical properties, microbial tests and ion measurement are conducted in order to investigate the parameters affecting this phenomenon for the cooling tower of Shahid Beheshti power plant of Lushan. The microbial tests include the TBC test to measure the total number of bacteria (general test) and specific tests to measure specific bacteria such as APB, FP, IRB, NRB, Aero, SRB and TRB. Moreover, physicochemical parameters (pH, electrical conductivity, salinity percentage, hardness and water temperature), anions and cations are determined. It is observed that the calcium ion in the sample is in the range of high concentration (517 ppm) which leads to increase sedimentation and retention of water in the cooling cycle. On the other hand, the high concentration of sulfate (2126 ppm) causes the growth of SRB in the sample. For this purpose, it is very important to control and tackle these problems by applying sediment-forming and destructive microbial agents in the cycle. Common methods such as chlorination and ozonation are the first priority to deal with microbial corrosion in this power plant. Due to the high concentration of sulfate ions, it is suggested that selective removal of sulfate ions counts as a second priority. High concentration of calcium ion might be resolved by applying the chemical regimes in the clarifier such as adding CaOH, FeCl3 and coagulant and control and inhibit the microbial corrosion.

Keywords


  1. Bai, P., Zhao, H., Zheng, S., and Chen, C. (2015). Initiation and developmental stages of steel corrosion in wet H2S environments. Corrosion Science, 93, 109-119.
  2. Lee, W., Lewandowski, Z., Nielsen, P.H., and Hamilton, W.A. (1995). Role of sulfate‐reducing bacteria in corrosion of mild steel: a review. Biofouling, 8(3), 165-194.
  3. Kip, N. and Van Veen, J.A. (2015). The dual role of microbes in corrosion. The ISME journal, 9(3), 542-551.
  4. Iverson, W.P. (1987). Microbial corrosion of metals. Advances in applied microbiology, 32, 1-36.
  5. Little, B., Wagner, P., and Mansfeld, F. (1991). Microbiologically influenced corrosion of metals and alloys. International Materials Reviews, 36(1), 253-272.
  6. Zuo, R. (2007). Biofilms: strategies for metal corrosion inhibition employing microorganisms. Applied microbiology and biotechnology, 76, 1245-1253.
  7. Ashrafi, A. (2023). Biosensors, mechatronics, & microfluidics for early detection & monitoring of microbial corrosion: A comprehensive critical review. Results in Materials, 100402.
  8. Kokilaramani, S., Al-Ansari, M.M., Rajasekar, A., Al-Khattaf, F.S., Hussain, A., and Govarthanan, M. (2021). Microbial influenced corrosion of processing industry by re-circulating waste water and its control measures-A review. Chemosphere, 265, 129075.

9-         ده بزرگی، م. و بازرگان لاری، ر. (1398). بررسی اثر استفاده از رنگ های حاوی اکسید مس و اکسید روی (زینک ریچ) بر رفتار خوردگی میکروبی لوله های فاضلاب، فصلنامه علمی-پژوهشی مواد نوین، 9، 26-15.

  1. Crolet, J.L. (2005). Microbial corrosion in the oil industry: a corrosionist's view. Petroleum microbiology, 143-169.
  2. Loto, C. (2017). Microbiological corrosion: mechanism, control and impact—a review. The International Journal of Advanced Manufacturing Technology, 92(9-12), 4241-4252.
  3. El-Shamy, A.M. (2020). A review on: biocidal activity of some chemical structures and their role in mitigation of microbial corrosion. Egyptian Journal of Chemistry, 63(12), 5251-5267.
  4. Zhu, X. and Logan, B.E. (2014). Copper anode corrosion affects power generation in microbial fuel cells. Journal of Chemical Technology & Biotechnology, 89(3), 471-474.
  5. Li, Y. and Ning, C. (2019). Latest research progress of marine microbiological corrosion and bio-fouling, and new approaches of marine anti-corrosion and anti-fouling. Bioactive materials, 4, 189-195.

15-        خادم مدرسی، ز.، بازرگان لاری, ر. و .بختیاری, ف. (2012). بررسی خوردگی میکروبی شبکه فاضلاب رو بتنی شهرستان مرودشت با توجه به غلظت سولفید هیدروژن. فصلنامه علمی-پژوهشی مواد نوین، 3(8)، 94-104.

  1. Mardani, S., The Effect of Edge-of-Field Nutrient Management Practices on Microbial Concentrations in Subsurface Drainage Water and the Associated Risk of Antibiotic Resistance Dissemination. 2019: South Dakota State University.
  2. Zalesny, R.S., Casler, M.D., Hallett, R.A., Lin, C.-H., and Pilipović, A., Bioremediation and soils, in Soils and landscape restoration. 2021, Elsevier. p. 237-273.
  3. Hoai Bac, V., Effects of antibiotics on the intestinal microcirculation in septic rats. 2006.
  4. Cristiani, P. and Perboni, G., Corrosion monitoring in microbial environments, in Techniques for corrosion monitoring. 2021, Elsevier. p. 335-377.

20- قربانی، ر. و جعفری، ا.  (1397). بررسی خوردگی در برج احیا آمین پالایشگاه دوم پارس جنوبی با استفاده از شبیه ساز فرآیندی در واحد شیرین سازی گاز و کاهش نرخ خوردگی به کمک کنترل متغیرهای فرآیندی، فصلنامه علمی-پژوهشی مواد نوین، 10، 91-104.

  1. Song, X., Yang, Y., Yu, D., Lan, G., Wang, Z., and Mou, X. (2016). Studies on the impact of fluid flow on the microbial corrosion behavior of product oil pipelines. Journal of Petroleum Science and Engineering, 146, 803-812.
  2. Wu, T., Xu, J., Sun, C., Yan, M., Yu, C., and Ke, W. (2014). Microbiological corrosion of pipeline steel under yield stress in soil environment. Corrosion Science, 88, 291-305.
  3. Wu, T., Yan, M., Xu, J., Liu, Y., Sun, C., and Ke, W. (2016). Mechano-chemical effect of pipeline steel in microbiological corrosion. Corrosion Science, 108, 160-168.
  4. Eid, M.M., Duncan, K.E., and Tanner, R.S. (2018). A semi-continuous system for monitoring microbially influenced corrosion. Journal of microbiological methods, 150, 55-60.
  5. Industry, P., Industry, M., and Industry, W. (1972). corrosion control.
  6. Szymański, K., Hernas, A., Moskal, G., and Myalska, H. (2015). Thermally sprayed coatings resistant to erosion and corrosion for power plant boilers-A review. Surface and Coatings Technology, 268, 153-164.
  7. Javaherdashti, R. (2000). How corrosion affects industry and life. Anti-corrosion methods and materials, 47(1), 30-34.
  8. Spiegel, M., Zahs, A., and Grabke, H. (2003). Fundamental aspects of chlorine induced corrosion in power plants. Materials at high temperatures, 20(2), 153-159.