Investigating the effect of different sources of magnesium oxide on the structure and final properties of wall tile bodies containing CaO using rapid firing method

Document Type : Research Paper

Authors

1 Department of Materials Engineering, College of Technology and Engineering, Saveh Branch, Islamic Azad University, Saveh, Iran

2 Department of Materials Science and Engineering, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran

Abstract

Abstract
Introduction: In this research, the effect of different sources of magnesium oxide and the effect of CaO/MgO ratio, as the main oxides that activate the reactions during wall tile firing, on the path of transformations and the formation of useful phases such as Anorthite, Diopside, and Wollastonite, and the reduction of the destructive phase of Gehlenite and free quartz was studied.
Methods: Three groups with 12% wt. of calcium carbonate - as the main source of CaO supply - and different weight percentages (5, 7 and 10%) from local soils supplying MgO in Iran (Zanjan talc, Boroujard talc and Abdol-Abad dolomite) were built. After forming with a press, the mixtures were sintered in a fully industrial process and in a fast firing furnace. By means of X-ray diffraction test and with the help of Rietveld refinement method which was carried out in Maud software, the weight percentage of the forming phases of the final microstructure was quantitatively calculated.
Findings: In the samples containing talc, with the increase of the weight percentage of talc and the decrease of CaO/MgO ratio, the weight percentage of Anorthite and Gehlenite phase increased and the Diopside phase decreased. Also, the coefficient of thermal expansion and moisture expansion test decreased by decreasing the ratio of CaO/MgO. In samples containing dolomite, increasing the weight percentage of CaO oxide, despite the acceptable weight percentage of MgO oxide, led the tendency of the structure towards the formation of more calcium aluminosilicates such as Anorthite and Gehlenite. The extreme increase of Gehlenite phase (6% wt.) caused a large increase in thermal expansion coefficient (8.35 x 10-6 units/degree Celsius) and moisture expansion percentage (0.12%) in the sample with 10%wt. dolomite.

Keywords


  1. Biffi, G., & Giovannini, R. (2003). Book for the production of the ceramic tiles. Gruppo editoriale Faenza.
  2. Kim, J., Katsuki, H., Jongprateep, O., Boonsalee, S., & Pee, J. H. (2021). Investigation of the correlation between porcelain phase composition and bending strength using a Rietveld quantitative analysis. Journal of the Ceramic Society of Japan, 129(10), 619-624.
  3. Yousaf, M., Iqbal, T., Hussain, M. A., Tabish, A. N., Haq, E. U., Siddiqi, M. H. & Mahmood, H. (2022). Microstructural and mechanical characterization of high strength porcelain insulators for power transmission and distribution applications. Ceramics International, 48(2), 1603-1610.
  4. Torres, F. J., de Sola, E. R., & Alarcón, J. (2006). Mechanism of crystallization of fast fired mullite-based glass–ceramic glazes for floor-tiles. Journal of non-crystalline solids, 352(21-22), 2159-2165.
  5. Torres, F. J., & Alarcón, J. (2005). Pyroxene-based glass-ceramics as glazes for floor tiles. Journal of the European Ceramic Society, 25(4), 349-355.
  6. Brasileiro, C. T., Conte, S., Contartesi, F., Melchiades, F. G., Zanelli, C., Dondi, M., & Boschi, A. O. (2021). Effect of strong mineral fluxes on sintering of porcelain stoneware tiles. Journal of the European Ceramic Society, 41(11), 5755-5767.
  7. Dondi, M., Raimondo, M., & Zanelli, C. (2014). Clays and bodies for ceramic tiles: Reappraisal and technological classification. Applied Clay Science, 96, 91-109.
  8. Zanelli, C., Marrocchino, E., Guarini, G., Toffano, A., Vaccaro, C., & Dondi, M. (2021). Recycling construction and demolition residues in clay bricks. Applied Sciences, 11(19), 8918.
  9. Peters, T. (1978). Mineralogical changes during firing of calcium-rich brick clays, American ceramic society bulletin, 57.
  10. Dubale, M., Vasić, M. V., Goel, G., Kalamdhad, A., & Singh, L. B. (2022). Utilization of Construction and Demolition Mix Waste in the Fired Brick Production: The Impact on Mechanical Properties. Materials, 16(1), 262.
  11. Traore, K., Kabre, T. S., & Blanchart, P. (2003). Gehlenite and anorthite crystallisation from kaolinite and calcite mix. Ceramics International, 29(4), 377-383.
  12. Traoré, K., Ouédraogo, G. V., Blanchart, P., Jernot, J. P., & Gomina, M. (2007). Influence of calcite on the microstructure and mechanical properties of pottery ceramics obtained from a kaolinite-rich clay from Burkina Faso. Journal of the European Ceramic Society, 27(2-3), 1677-1681.
  13. Kłosek-Wawrzyn, E., Małolepszy, J., & Murzyn, P. (2013). Sintering behavior of kaolin with calcite. Procedia Engineering, 57, 572-582.
  14. Cultrone, G., Rodriguez-Navarro, C., Sebastian, E., Cazalla, O., & De La Torre, M. J. (2001). Carbonate and silicate phase reactions during ceramic firing. European Journal of Mineralogy, 13(3), 621-634
  15. Ke, S., Cheng, X., Wang, Y., Wang, Q., & Wang, H. (2013). Dolomite, Wollastonite and calcite as different CaO sources in Anorthite-based porcelain. Ceramics International, 39(5), 4953-4960.
  16. González-García, F., Romero-Acosta, V., García-Ramos, G., & González-Rodríguez, M. (1990). Firing transformations of mixtures of clays containing Illite, kaolinite and calcium carbonate used by ornamental tile industries. Applied Clay Science, 5(4), 361-375.
  17. Bozadjiev, L. S., Bozadjiev, R. L., Georgiev, G. T., & Doncheva, L. S. (2006). Diopside porcelain tile. Bull. Am. Ceram. Soc, 85, 12-9101.
  18. Mesbah, H., Wilson, M. A., Carter, M. A., & Shackleton, J. (2010, August). Effect of prolonged sintering time at 1200 C on the phase transformation and reactivity with moisture of fired kaolinite. In 11th International Conference on Ceramic Processing Science, ICCPS-11,(Zurich, Switzerland), The University of Manchester Library.
  19. Alonso-De la Garza, D. A., Guzmán, A. M., Gómez-Rodríguez, C., Martínez, D. I., & Elizondo, N. (2022). Influence of Al2O3 and SiO2 nanoparticles addition on the microstructure and mechano-physical properties of ceramic tiles. Ceramics International.  
  20. Wang, S., Li, X., Wang, C., Bai, M., Zhou, X., Zhang, X., & Wang, Y. (2022). Anorthite-based transparent glass-ceramic glaze for ceramic tiles: Preparation and crystallization mechanism. Journal of the European Ceramic Society, 42(3), 1132-1140.
  21. خلج، غلامرضا، نجفی، ابوالحسن، محمودحسینی، امیرحسین.(1401) بررسی تاثیر نسبت CaO/MgO برساختار و خواص نهایی بدنه های کاشی دیوار در پخت سریع با استفاده از منابع اولیه تالک زنجان و کربنات کلسیم عباس آباد،  فصلنامه علمی - پژوهشی مواد نوین.
  22. خلج، غلامرضا، نجفی، ابوالحسن، محمودحسینی، امیرحسین.(1401) بررسی تاثیر نسبت CaO/MgO برساختار و خواص نهایی بدنه های کاشی دیوار در پخت سریع با استفاده از منابع اولیه تالک بروجرد و و کربنات کلسیم عباس آباد،  فصلنامه علمی - پژوهشی مواد نوین.
  23. Kronberg, T., & Hupa, L. (2020). The impact of Wollastonite and dolomite on chemical durability of matte fast-fired raw glazes. Journal of the European Ceramic Society, 40(8), 3327-3337.
  24. Hao, D., Akatsu, T., Kamochi, N., Inada, M., & Shiraishi, A. (2023). Near-zero sintering shrinkage in pottery with Wollastonite addition. Journal of the European Ceramic Society, 43(2), 700-707.
  25. Amorós, J. L., Blasco, E., Moreno, A., & Feliu, C. (2022). Kinetics of the transformations occurring during the firing process of an industrial spray-dried porcelain stoneware body. Ceramics International, 48(12), 17611-17620.