The effect of pin shape on microstructure and mechanical properties of HA-Ti surface composites produced by FSP method

Document Type : Research Paper

Authors

1 PhD student of Materials Engineering, Department of Materials Engineering, Karaj Branch, Islamic Azad University, Karaj, Iran

2 Department of Materials Engineering, Karaj Branch, Islamic Azad University, Karaj, Iran

Abstract

Abstract
Introduction: Titanium and Hydroxyapatite (HA) are widely used in various industries, especially medicine and implants. The friction stir welding process (FSP) is one of the best methods for the fabrication of Ti/HA surface composites.
Methods: This research specifically examines the effect of pin shape in FSP on the microstructure and mechanical properties of Ti/HA surface composites. Process parameters including pin shape (triangular, square, and conical pins), speeds of 1150 and 1250 rpm, and traverse speeds of 30 and 45 mm/min were used. Characterization of Ti/HA surface composites was performed with the help of FESEM, X-ray diffraction analysis, energy dispersive spectrometer (EDS) analysis, and tensile test.
Findings: The results of the microstructure investigation showed that the triangular pin could not enter HA powder in the titanium substrate. At a higher rotational speed, fusion occurs to a greater extent in square and conical pins, reducing defects such as holes and cracks. The ultimate tensile strength values for the square pin with traverse speeds of 30 and 45 mm/min were 772 and 605 MPa, respectively. For the conical pin with traverse speeds of 30 and 45 mm/min, they were 894 and 747 MPa, respectively. Therefore, it was found that the ultimate tensile strength decreases with increasing traverse speed in both square and conical pins. Additionally, the ultimate tensile strength is always higher in samples processed with a conical pin than a square pin. These results show that process parameters significantly affect the mechanical properties of the specimens.

Keywords


1.         Lin M-H, Wang Y-H, Kuo C-H, Ou S-F, Huang P-Z, Song T-Y, et al. Hybrid ZnO/chitosan antimicrobial coatings with enhanced mechanical and bioactive properties for titanium implants. Carbohydrate Polymers. 2021;257:117639 DOI: 10.1016/j.carbpol.2021.117639.

2.         Priyadarshini B, Rama M, Chetan, Vijayalakshmi U. Bioactive coating as a surface modification technique for biocompatible metallic implants: a review. Journal of Asian Ceramic Societies. 2019;7(4):397-406 DOI: 10.1080/21870764.2019.1669861.

3.         López-Valverde N, Flores-Fraile J, Ramírez JM, Macedo de Sousa B, Herrero-Hernández S, López-Valverde A. Bioactive Surfaces vs. Conventional Surfaces in Titanium Dental Implants: A Comparative Systematic Review. Journal of Clinical Medicine. 2020;9(7) DOI: 10.3390/jcm9072047.

4.         Kurup A, Dhatrak P, Khasnis N. Surface modification techniques of titanium and titanium alloys for biomedical dental applications: A review. Materials Today: Proceedings. 2021;39:84-90 DOI: 10.1016/j.matpr.2020.06.163.

5.         Jaafar A, Hecker C, Árki P, Joseph Y. Sol-Gel Derived Hydroxyapatite Coatings for Titanium Implants: A Review. Bioengineering. 2020;7(4) DOI: 10.3390/bioengineering7040127.

6.         Fathi A, Ahmed M, Afifi M, Menazea A, Uskoković V. Taking hydroxyapatite-coated titanium implants two steps forward: surface modification using graphene mesolayers and a hydroxyapatite-reinforced polymeric scaffold. ACS biomaterials science & engineering. 2020;7(1):360-72 DOI: 10.1021/acsbiomaterials.0c01105.

7.         Ke D, Vu AA, Bandyopadhyay A, Bose S. Compositionally graded doped hydroxyapatite coating on titanium using laser and plasma spray deposition for bone implants. Acta Biomaterialia. 2019;84:414-23 DOI: 10.1016/j.actbio.2018.11.041.

8.         Bal Z, Kaito T, Korkusuz F, Yoshikawa H. Bone regeneration with hydroxyapatite-based biomaterials. Emergent Materials. 2020;3(4):521-44 DOI: 10.1007/s42247-019-00063-3.

9.         Ji G, Zou Y, Chen Q, Yao H, Bai X, Yang C, et al. Mechanical properties of warm sprayed HATi bio-ceramic composite coatings. Ceramics International. 2020;46(17):27021-30 DOI: 10.1016/j.ceramint.2020.07.179.

10.       Zhu L, Ye X, Tang G, Zhao N, Gong Y, Zhao Y, et al. Biomimetic coating of compound titania and hydroxyapatite on titanium. Journal of Biomedical Materials Research Part A. 2007;83A(4):1165-75 DOI: 10.1002/jbm.a.31401.

11.       Rungcharassaeng K, Lozada JL, Kan JYK, Kim JS, Campagni WV, Munoz CA. Peri-implant tissue response of immediately loaded, threaded, HA-coated implants: 1-year results. The Journal of Prosthetic Dentistry. 2002;87(2):173-81 DOI: 10.1067/mpr.2002.121111.

12.       Zheng X, Huang M, Ding C. Bond strength of plasma-sprayed hydroxyapatite/Ti composite coatings. Biomaterials. 2000;21(8):841-9 DOI: 10.1016/S0142-9612(99)00255-0.

13.       Arifin A, Sulong AB, Muhamad N, Syarif J, Ramli MI. Material processing of hydroxyapatite and titanium alloy (HA/Ti) composite as implant materials using powder metallurgy: A review. Materials & Design. 2014;55:165-75 DOI: 10.1016/j.matdes.2013.09.045.

14.       Yang S, Li W, Man HC. Laser cladding of HA/Ti composite coating on NiTi alloy. Surface engineering. 2013;29(6):409-31 DOI: 10.1179/1743294413Y.0000000115.

15.       Rahmati R, Khodabakhshi F. Microstructural evolution and mechanical properties of a friction-stir processed Ti-hydroxyapatite (HA) nanocomposite. Journal of the Mechanical Behavior of Biomedical Materials. 2018;88:127-39 DOI: 10.1016/j.jmbbm.2018.08.025.

16.  Molla Ramezani, N., Davoodi, B., Farahani, M. Surface integrity of metal matrix nanocomposite produced by friction stir processing (FSP). J Braz. Soc. Mech. Sci. Eng. 2019; 41:503. https://doi.org/10.1007/s40430-019-2014-2

17.       Yousefpour F, Jamaati R, Jamshidi Aval H. Investigation of microstructure, crystallographic texture, and mechanical behavior of magnesium-based nanocomposite fabricated via multi-pass FSP for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials. 2022;125:104894 DOI: 10.1016/j.jmbbm.2021.104894.

18.       Liu W, Liu S, Wang L. Surface Modification of Biomedical Titanium Alloy: Micromorphology, Microstructure Evolution and Biomedical Applications. Coatings. 2019;9(4) DOI: 10.3390/coatings9040249.

19.       Hakakzadeh M, Jafarian HR, Seyedein SH, Eivani AR, Park N, Heidarzadeh A. Production of Ti-CNTs surface nanocomposites for biomedical applications by friction stir processing: Microstructure and mechanical properties. Materials Letters. 2021;300:130138 DOI: 10.1016/j.matlet.2021.130138.

20- لطفی, بهنام, پورچینی, پوریا, صادقیان, زهره. (1398). تولید و مشخصه یابی کامپوزیت درجای Al-Al3Ti تولید شده به روش FSP با استفاده از پودر پیش فعال آسیاکاری شده. فصلنامه علمی - پژوهشی مواد نوین, 10(38), 1-16.

21.       Khodabakhshi F, Rahmati R, Nosko M, Orovčík L, Nagy Š, Gerlich AP. Orientation structural mapping and textural characterization of a CP-Ti/HA surface nanocomposite produced by friction-stir processing. Surface and Coatings Technology. 2019;374:460-75 DOI: 10.1016/j.surfcoat.2019.06.009.

22.       Shahbaz A, Abbasi M, Sabet H. Effect of microstructure on mechanical, electrochemical, and biological properties of Ti/HA surface composites fabricated by FSP method. Materials Today Communications. 2023;37:107305 DOI: 10.1016/j.mtcomm.2023.107305.

23.       El-Sayed MM, Shash AY, Abd-Rabou M, ElSherbiny MG. Welding and processing of metallic materials by using friction stir technique: A review. Journal of Advanced Joining Processes. 2021;3:100059 DOI: 10.1016/j.jajp.2021.100059.

24.       Bharti S, Ghetiya ND, Patel KM. A review on manufacturing the surface composites by friction stir processing. Materials and Manufacturing Processes. 2021;36(2):135-70 DOI: 10.1080/10426914.2020.1813897.

25.       García-Galvan FR, Fajardo S, Barranco V, Feliu S. Experimental Apparent Stern–Geary Coefficients for AZ31B Mg Alloy in Physiological Body Fluids for Accurate Corrosion Rate Determination. Metals. 2021;11(3) DOI: 10.3390/met11030391.

26.       Dinaharan I, Murugan N, Akinlabi ET. Friction stir processing route for metallic matrix composite production. 2021.

27.       Mishra RS, Ma ZY. Friction stir welding and processing. Materials Science and Engineering: R: Reports. 2005;50(1):1-78 DOI: 10.1016/j.mser.2005.07.001.

28.       Rubtsov V, Chumaevskii A, Gusarova A, Knyazhev E, Gurianov D, Zykova A, et al. Macro- and Microstructure of In Situ Composites Prepared by Friction Stir Processing of AA5056 Admixed with Copper Powders. Materials. 2023;16(3) DOI: 10.3390/ma16031070.

29.       Asadi P, Faraji G, Besharati MK. Producing of AZ91/SiC composite by friction stir processing (FSP). The International Journal of Advanced Manufacturing Technology. 2010;51(1):247-60 DOI: 10.1007/s00170-010-2600-z.

30.       Jenkins R, Snyder RL. Introduction to X-ray Powder Diffractometry (Volume 138): Wiley Online Library; 1996.

31.       Raaft M, Mahmoud TS, Zakaria HM, Khalifa TA. Microstructural, mechanical and wear behavior of A390/graphite and A390/Al2O3 surface composites fabricated using FSP. Materials Science and Engineering: A. 2011;528(18):5741-6 DOI: 10.1016/j.msea.2011.03.097.

32.       Chong Y, Tsuru T, Guo B, Gholizadeh R, Inoue K, Tsuji N. Ultrahigh yield strength and large uniform elongation achieved in ultrafine-grained titanium containing nitrogen. Acta Materialia. 2022;240:118356 DOI: 10.1016/j.actamat.2022.118356.

33.       Zhang HJ, Liu HJ, Yu L. Microstructure and mechanical properties as a function of rotation speed in underwater friction stir welded aluminum alloy joints. Materials & Design. 2011;32(8):4402-7 DOI: 10.1016/j.matdes.2011.03.073.

34. Poondla, N., T.S. Srivatsan, A. Patnaik, and M. Petraroli, A study of the microstructure and hardness of two titanium alloys: Commercially pure and Ti–6Al–4V. Journal of Alloys and Compounds, 2009. 486(1): p. 162-167.