Effect of pH on Production Process and Characteristics of Zirconium Carbide Nano Particles Synthesized by Sol-Gel Method

Document Type : Research Paper

Authors

Abstract

Zirconium carbide Nano particle was synthesized through sol-gel method. Although sol-gel process is usually used to producing oxide compounds, in this study it was successfully employed to produce a carbide powder. For this purpose, zirconium propoxide and saccharose were initially used as zirconium and carbon sources, respectively. The starting sol was produced in 5 different pH, in order to examine its effects on the properties of the obtained powder. Heat-treatment of the gel, in a range of 700-1400 °C, resulted in the formation of mixed zirconia-carbon powder, and subsequently, zirconium carbide. Then, differential thermal analysis (DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to investigate heat performance of the gel, structure and micro-structures of the synthesized powder, respectively. Results showed that increasing the pH could not only affect the reaction process and efficiency of the zirconium carbide synthesis, but it also decreased the particles size of the powder. Therefore, at pH 4.2, 5.2 and 6.2, the size ranges of 130-190, 90-150 and 50-100 nm were obtained, respectively. It was also noted that changes in pH had no effects on the morphology of the spherical particles.

Keywords


1-A. Arya and E.A. Carter, Structure, bonding, and adhesion at the ZrC (100) / Fe (110) interface from first principles, Surface Science, vol.560, Issue 1, pp.103-120, 2004.
 
2- E. K. Storms, The refractory carbides, Academic Press, New York, 1971.
 
3- M. M. Opeka, I. G. Talmy, E.J. Wuchina, J. A. Zaykoksi and S. J. Causey, Mechanical, Thermal, and Oxidation Properties of Refractory Hafnium and zirconium Compounds, Journal of the European ceramic Society, Issue 13-14, pp. 2405- 2414, 1999.
 
4- H. O. Pierson, Handbook of Refractory Carbides and Nitrides, Properties, Characteristics, Processing and Applications, Noyes Publication, New Jersey, 1996.
 
5- K. Minato, T. Ogwa, K. Sawa, and K. Sawa, Irradiation Experiment on ZrC- Coated Fuel Particle for High Temperature gas-Coaled Reactors, Nuclear Technology, Vol. 130, Issue 3,  pp. 272-281, 2000.
  
6- X. Shen, K. li and F. Deng, The Effect of Zirconium Carbide on Ablation of carbon/ carbon    Composites under an Oxyacetylene Flame, Corrosion Science, Vol. 53, Issue1, pp. 105-112, 2011.
 
7- C. Chen, and C. Puliu, Characterization of Sputtered nano Crystalline Zirconium Carbide as a Diffusion Barrier for Cu Metallization, Journal of Electronic Materials, Vol. 34, Issue 11, pp. 1408- 1413,  2005.
 
8- X. Zheng, L. Liu, and H. Zhang, Properties of Zr-ZrC Gradient Films on TiNi by the Technique     Combined with PECVD, Surface and Coating Technology, Vol. 202, Issue 13, pp. 3011-3016, 2008.
           
9- J. Li, Z. Fu, W. M. Wang, H. Wang and K. Niihara, Preparation of ZrC by Self Propagating High Temperature Synthesis, Ceramics International, Vol. 36, Issue 5, pp. 1681-1686, 2010.
    
10- Q. Lin, L. Zhang, L. Cheng and Y. Wang, Morphologies and growth mechanisms of zirconium carbide films by chemical vapor deposition, Journal of Coating Technology and Research, Vol. 6, Issue 2, pp. 269-273, 2009.
 
11- G. Vasudevamurthy, T. Knight and E. Roberts, Laboratory production of zirconium carbide compacts for use in inert matrix fuels, Journal of Nuclear Materials, Vol. 374, Issue 1  pp. 241-247, 2008.
 
12- J. Dong, W. Shen, X. Liu, X.Hu, B. Zhang, F. Kang, J. Gu, D. Li and N. Chen, A new method      synthesizing the encapsulated ZrC with graphitic layers, Materials Research Bulletin, Vol. 36, Issue 5-6, 933-938, 2001.
13- L. E. Toth, Transition Metal Carbides and Nitrides, New York, Academic press, 1971.
 
14- X.Y. Tao, W.F. Qiu, H.Li, and T. Zhao, One pot synthesis of a soluble polymer for zirconium carbide, Chinese Chemical Letters,  Vol. 21, Issue 5, pp. 620-623, 2010.
 
15- I. Hasegawa, Y. Fukuda and M. Kajiwara, Inorganic-organic hybrid route to synthesis of ZrC and Si-Zr-C fibers, Ceramics International, Vol. 25, Issue 6,  pp. 523-527, 1999.
 
16- M. M. Lopez Guerrero, A. G. Torres, E. V. Alonso, M.T. Cordero and J.M. Pavon, Quantitative determination of ZrC in new ceramic materials by Fourier transforms infrared spectroscopy, Ceramics International, Vol.37, Issue 2, pp. 607-613, 2011.
 
17- C. J. Brinker and G.W. Scherer, Sol-Gel science: The Physics and Chemistry of Sol-Gel Processing, New York, Academic Press, 1990.
 
18- ا. حیدری، م. جعفری و ع. صفارتلوری،  ʺسنتز و مشخصه­­­یابی کامپوزیت­های نانوکریستالی اکسیدروی با سطح ویژه بالا نشانده ­شده در زمینه سیلیکا- آلومینا به روش سل-ژلʺ مجله مواد نوین/جلد4/ شماره 1/پاییز 1392.
 
19- M. D. Sacks, C. A. Wang, Z. Yang and A. Jain, Carbothermal reduction synthesis of nano crystalline zirconium carbide and hafnium carbide powders using solution-derived precursors, Journal of  Materials  Science, Vol. 39, Issue 19, pp.  6057-6066,  2004.
 
20- Y. Yan, Z. Huang, X. Liu and D. Jiang, Carbothermal synthesis of ultrafine zirconium carbide powders using inorganic precursors via sol-gel method, Journal of  Sol-Gel Science and Technology, Vol. 44, Issue 1, pp. 81-85, 2007.
 
21- M. Dolle, D. Gosset, C. Bogicevic, F. Karolak, D. Simeone and G. Baldinozzi, Synthesis of nano sized zirconium carbide by a sol-gel route, Journal of the European Ceramic Society, Vol. 27, Issue 4, pp. 2061-2067, 2007.
 
22- J. Xie, Z. Fu, Y. Wang, S. W. Lee and K. Niihara, Synthesis of nano sized zirconium carbide powders by a combinational method of sol-gel and pulse current heating, Journal of the European Ceramic Society, Vol. 34, Issue 1, pp.13-17, 2014.
 
23- B. D. Culity, Elements of X-Ray Diffraction, Addision-Wesley Publishing, Massachusetts, 1997.