Synthesis and Characterization of Temperature‐Sensitive Hydrogel Copolymer Based on N-isopropylacrylamide for Medical Applications

Document Type : Research Paper

Authors

Abstract

      In this study, temperature-sensitive hydrogel copolymer based on N- isopropyl acrylamide macromolecule synthesized and characterized. The confirming successfulness of copolymer synthesis by radical polymerization method was carried out by fourier transform infrared spectroscopy (FTIR) and hydrogen nuclear magnetic resonance (H-NMR). The gelation behavior and viscoelastic properties of hydrogel copolymer were tested by rheology test. Lower critical solubility temperature (LCST) of samples was calculated using differential scanning calorimeter (DSC) at 30°C. Also, the rate of swelling of temperature‐sensitive hydrogel calculated 80%. Rheological studies and temperature analysis showed increasing the temperature to 60°C that it results in production of stable phases. Therefore, this hydrogel designed according to the temperature-sensitive component can be considered as a potential candidate for medical applications. 

Keywords


  References:
1-J. Hu, H. Meng, G. Li and SI. Ibekwe, "A review of stimuli-responsive polymers for smart textile applications", Smart Materials and Structures, Vol.21, No. 5, 053001,2012.
2- F. Liu and M.W. Urban, " Recent advances and challenges in designing
stimuli-responsive polymers", Progress in Polymer Science,Vol.35, pp. 3-23, 2010.
3- S.M. Mirvakili, A. Pazukha, W. Sikkema, CW. Sinclair, GM. Spinks, RH. Baughman and J. D. W. Madden, "Niobium Nanowire Yarns and their Application as Artificial Muscles", Advanced Functional Materials, Vol. 23,  pp. 4311–4316, 2013.
4- E.S. Gil and SM. Hudson, "Stimuli-reponsive polymers and their bioconjugates", Progress in polymer science, Vol .29, pp. 1173-222, 2004.
5- B. Vernon, S.W. Kim and Y.H. Bae, "Thermoreversible copolymer gels for extracellular matrix", Journal of biomedical materials research, Vol. 51, pp.69-79, 2000.
6- B. Kim, G. Spinks, C. Too, G. Wallace and Y. Bae, "Preparation and characterisation of processable conducting polymer–hydrogel composites", Reactive and Functional Polymers, Vol. 44, pp.31-40, 2000.          
7- O. Wichterle and D. Lim, "Hydrophilic gels for biological use", Nature 185, pp.117 – 118, 1960.      
8- A. Robson, Soil Acidity and Plant Growth, 1st ed,  p. 1-60, Academic Press, Elsevier, 1989.   
9- Y. Qiu and k. Park, "Environment-sensitive hydrogels for drug delivery", Advanced Drug Delivery Reviews, Vol. 64, pp 49-60, 2012.   
10- R. A. Siegel, "Stimuli sensitive polymers and self regulated drug delivery systems: A very partial review." Journal of Controlled Release, Vol.190, pp. 337-351, 2014.           
11- D. Roy, J.N. Cambre and BS. Sumerlin, "Future perspectives and recent advances in stimuli-responsive materials", Progress in Polymer Science, Vol.35, pp.278-301, 2010.         
12- L.E. Bromberg and E.S. Ron, "Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery", Advanced drug delivery reviews, Vol. 31, pp.197-221, 1998.       
13- A. Abolfazl, Z. Nosratollah and M. Haleh, "Synthesis, characterization, and in vitro evaluation of novel polymer-coated magnetic nanoparticles for controlled delivery of doxorubicin", Nanotechnology, Science and Applications; Vol. 5 pp. 13–25, 2012.
14- H. Uludag, B. Norrie, N. Kousinioris and T. Gao, "Engineering temperature‐sensitive poly (N‐isopropylacrylamide) polymers as carriers of therapeutic proteins", Biotechnology and bioengineering; Vol. 73, pp.510-21, 2001.
15-E.L. Rice, "2-Manipulated Ecosystems: Roles of Allelopathy in Agriculture", Allelopathy (Second Edition). San Diego: Academic Press, pp. 8-73, 1984.        
          
16- J. Reedijk and K. Poeppelmeier, Comprehensive Inorganic Chemistry II, 2nd ed., p. 641, Elsevier, The Netherlands, 2013.

17- C. Charcosset, "2.43 - Membrane Systems and Technology", In: Moo-Young M, editor. Comprehensive Biotechnology (Second Edition). Burlington: Academic Press, pp. 603-18, 2011.
 
18- M.C. Hacker, L. Klouda, B.B. Ma, J.D. Kretlow and A.G. Mikos, "Synthesis and characterization of injectable, thermally and chemically gelable, amphiphilic poly (N-isopropylacrylamide)-based macromers", Biomacromolecules,Vol.9, pp.1558-70, 2008.        
19-م. مظفری، ن. جوهری و م.ح. فتحی، "داربست کامپوزیتی پلی کاپرولاکتون هیدروکسی اپاتیت: بررسی تآثیر درصد ذرات هیدروکسی آپاتیت و مقایسه ذرات با سایز نانومتری و میکرومتری و اثر آن ها بر خواص مکانیکی و زیست تخریب پذیری داربست"، مجله مواد نوین، سال 5، شماره4، ص 131-142، 1394.
  
20- R. Morita , R. Honda and Y. Takahashi,  "Development of oral controlled release preparations, a PVA swelling controlled release system (SCRS). II. In vitro and in vivo evaluation", J Control Release, Vol. 68(1), pp.115-20, 2000.      
21- L. Starovoytova, J. Spěváček, L. Hanykova and M. Ilavský, "1H NMR study of phase transition of uncharged and negatively charged poly (N‐isopropylmethacrylamide) in D2O solutions",  Macromolecular Symposia: Wiley Online Library, pp. 239-46, 2003.
22- Y. Xia, N.A. Burke and H.D. Stöver, "End group effect on the thermal response of narrow-disperse poly (N-isopropylacrylamide) prepared by atom transfer radical polymerization", Macromolecules, Vol. 39, pp.2275-83, 2006.
23- C. Guse, S. Koennings, A. Maschke, M. Hacker, C. Becker, S. Schreiner, T. Blunk, T. Spruss and A. Goepferich, "Biocompatibility and erosion behavior of implants made of triglycerides and blends with cholesterol and phospholipids", International journal of pharmaceutics, Vol. 314, pp.153-60, 2006.
24- F. Seniha Güner, Y. Yağcı and A. Tuncer Erciyes, "Polymers from triglyceride oils", Progress in Polymer Science, Vol.31, pp.633-70, 2006.   
25- S. Fulzele, P. Satturwar and A. Dorle, "Study of the biodegradation and in vivo biocompatibility of novel biomaterials",  European journal of pharmaceutical sciences, Vol.20, pp.53-61, 2003.     
26- K. Madhusudana Rao, B. Mallikarjuna, K. Krishna Rao, S. Siraj, K. Chowdoji Rao and M, Subha, "Novel thermo/pH sensitive nanogels composed from poly (N-vinylcaprolactam) for controlled release of an anticancer drug", Colloids and Surfaces B: Biointerfaces, Vol.102, pp.891-7, 2013.         
27- C. Park, S. Cho and B. Kim, "Synthesis and properties of thermosensitive polyurethane-b-poly(N-isopropyl acrylamide",  Reactive and Functional Polymers, Vol. 66, pp.585-91, 2006.          
28- E. Ruel-Gariépy and J-C. Leroux, "In situ-forming hydrogels—review of temperature-sensitive systems", European Journal of Pharmaceutics and Biopharmaceutics, Vol. 58, pp.409-26, 2004.
29- N. Adrus and M. Ulbricht, "Rheological studies on PNIPAAm hydrogel synthesis via in situ polymerization and on resulting viscoelastic properties", Reactive and Functional Polymers, Vol. 73, pp.141-8, 2013.
30- S. Ohya, Y. Nakayama and T. Matsud, "Thermoresponsive artificial extracellular
 
matrix for tissue engineering: hyaluronic acid bioconjugated with poly (N-isopropylacrylamide) grafts", Biomacromolecules, Vol.2, pp.856-63, 2001.
31- الف. سپهریان آذر و ش. باغی، "تهیه و شناسایی هیدروژل آمفیفیلیت آکریل آمید و سدیم آلژینات(I.P.N)  و شناسایی خواص فیزیکی آن"، فصلنامه‌ی کاربرد شیمی در محیط زیست، سال3، شماره 10، ص 32-23، 1391.       
32- Y. liu, X. Fan, B.Wei, Q. Si, W. Chen, L.Sun, “pH-responsive amphilic hydrogel networks With IPN structure: A strategy for controlled drug release”, International Journal of pH armaceutics, Vol.308, pp.205-206, 2005.