References:
1-Salgot, M. and M. Folch, Wastewater treatment and water reuse. Current Opinion in Environmental Science & Health, 2018. 2: p. 64-74.
2-Peng, W., et al., A review on heavy metal ions adsorption from water by graphene oxide and its composites. Journal of Molecular Liquids, 2017. 230: p. 496-504.
3-Jamaly, S., et al., A short review on reverse osmosis pretreatment technologies. Desalination, 2014. 354: p. 30-38.
4-Kim, B.-K., et al., Application of ionic liquids for metal dissolution and extraction. Journal of Industrial and Engineering Chemistry, 2018. 61: p. 397-388.
5-Hao, J., et al., Rapid, efficient and economic removal of organic dyes and heavy metals from wastewater by zinc-induced in-situ reduction and precipitation of graphene oxide. Journal of the Taiwan Institute of Chemical Engineers, 2018. 88: p. 137-145.
6-Luo, T., S. Abdu, and M. Wessling, Selectivity of ion exchange membranes: A review. Journal of Membrane Science, 2018. 555: p. 429-454.
7-Bansod, B., et al., A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosensors and Bioelectronics, 2017. 94: p. 443-455 .
8-Ramsden, J.J., Chapter 4 - Why Nanotechnology?. in Applied Nanotechnology (Third Edition), J.J. Ramsden, Editor. 2018, William Andrew Publishing. p. 47-57.
9-س. شیخعلی، م. عمادی، ن. کراچی، "بررسی سینتیک و مدلهای ایزوترمی جذب رنگهای آلی بوسیلهی نانوذرات مغناطیسی"، مجلهی مواد نوین، جلد 5، شمارهی 4، ص 42-29، تابستان 1394.
10-Akhlaghian, F., M. Ghadermazi, and B. Chenarani, Removal of phenolic compounds by adsorption on nano structured aluminosilicates. Journal of Environmental Chemical Engineering, 2014. 2(1): p. 543-549.
11-Ren, S., P. Rong, and Q. Yu, Preparations, properties and applications of graphene in functional devices: A concise review. Ceramics International, 2018. 44(11): p. 11940-11955.
12-Kumar, A., et al., Low temperature synthesis and field emission characteristics of single to few layered graphene grown using PECVD. Applied Surface Science, 2017. 402: p. 161-167.
13-Cheng, G.-W., et al., Fabrication of graphene from graphite by a thermal assisted vacuum arc discharge system. Superlattices and Microstructures, 2017. 104: p. 258-265.
14-Hazarika, A., et al., Microwave-induced hierarchical iron-carbon nanotubes nanostructures anchored on polypyrrole/graphene oxide-grafted woven Kevlar® fiber. Composites Science and Technology, 2016. 129: p. 137-145.
15-Jiang, F., et al., A novel synthesis route of graphene via microwave assisted intercalation-exfoliation of graphite. Materials Letters, 2017. 200: p. 39-42.
16-Janowska, I., et al., Catalytic unzipping of carbon nanotubes to few-layer graphene sheets under microwaves irradiation. Applied Catalysis A: General, 2009. 371(1): p. 22-30.
17-ف. قاسمی، س. داداشیان، ف. باورسیها، "سنتز نانوکامپوزیتهای با ساختار هسته-پوسته و بررسی خواص مغناطیسی آنها"، مجلهی مواد نوین، جلد 8، شمارهی 3، ص 60-51، بهار 1397.
18-Mohammed, L., et al., Magnetic nanoparticles for environmental and biomedical applications: A review. Particuology, 2017. 30: p. 1-14.
19-Khalil, M.I., Co-precipitation in aqueous solution synthesis of magnetite nanoparticles using iron(III) salts as precursors. Arabian Journal of Chemistry, 2015. 8(2): p. 279-284.
20-Li, Y., et al., Single-microemulsion-based solvothermal synthesis of magnetite microflowers. Ceramics International, 2014. 40(3): p. 4791-4795.
21-Attallah, O.A., E. Girgis, and M.M.S.A. Abdel-Mottaleb, Synthesis of non-aggregated nicotinic acid coated magnetite nanorods via hydrothermal technique. Journal of Magnetism and Magnetic Materials, 2016. 399: p. 58-63.
22-Rahmawati, R., et al., Optimization of Frequency and Stirring Rate for Synthesis of Magnetite (Fe3O4) Nanoparticles by Using Coprecipitation- Ultrasonic Irradiation Methods. Procedia Engineering, 2017. 170: p. 55-59.
23-Hedayatnasab, Z., F. Abnisa, and W.M.A.W. Daud, Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Materials & Design, 2017. 123: p. 174-196.
24-Ahmed, S., et al., A review on chitosan centred scaffolds and their applications in tissue engineering. International Journal of Biological Macromolecules, 2018. 116: p. 849-862.
25-Hosseinzadeh, H. and S. Ramin, Effective removal of copper from aqueous solutions by modified magnetic chitosan/graphene oxide nanocomposites. International Journal of Biological Macromolecules, 2018. 113: p. 859-868.
26-Jiang, Y., et al., Magnetic chitosan–graphene oxide composite for anti-microbial and dye removal applications. International Journal of Biological Macromolecules, 2016. 82: p. 702-710.
27-Seidi, S., et al., Magnetic nanocomposite of chitosan-Schiff base grafted graphene oxide for lead analysis in whole blood. Analytical Biochemistry, 2018. 553: p. 28-37.
28-Sheshmani, S., A. Ashori, and S. Hasanzadeh, Removal of Acid Orange 7 from aqueous solution using magnetic graphene/chitosan: A promising nano-adsorbent. International Journal of Biological Macromolecules, 2014. 68: p. 218-224.
29-Kefeni, K.K., B.B. Mamba, and T.A.M. Msagati, Application of spinel ferrite nanoparticles in water and wastewater treatment: A review. Separation and Purification Technology, 2017. 188: p. 399-422.
30-Banazadeh, A., S. Mozaffari, and B. Osoli, Facile synthesis of glutamine functionalized magnetic graphene oxide nanosheets: Application in solid phase extraction of cadmium from environmental sample. Journal of Environmental Chemical Engineering, 2015. 3(4): p. 2801-2808.
31-Wang, H., R. Li, and Z. Li, Nanohybrid of Co3O4 and histidine-functionalized graphene quantum dots for electrochemical detection of hydroquinone. Electrochimica Acta, 2017. 255: p. 323-334.
32-Mollarasouli, F., et al., Ultrasensitive determination of receptor tyrosine kinase with a label-free electrochemical immunosensor using graphene quantum dots-modified screen-printed electrodes. Analytica Chimica Acta, 2018. 1011: p. 28-34.
33-Chandra, V., et al., Water-Dispersible Magnetite-Reduced Graphene Oxide Composites for Arsenic Removal. ACS Nano, 2010. 4(7): p. 3979–3986.
34-Teymourian, H., A. Salimi, and S. Khezrian, Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform. Biosensors and Bioelectronics, 2013. 49: p. 1-8.
35-Haridas, V., S. Sugunan, and B.N. Narayanan, One-pot low-temperature green synthesis of magnetic graphene nanocomposite for the selective reduction of nitrobenzene. Journal of Solid State Chemistry, 2018. 262: p. 287-293 .
36-Ye, N., et al., Synthesis of magnetite/graphene oxide/chitosan composite and its application for protein adsorption. Materials Science and Engineering: C, 2014. 45: p. 8-14.
37-Abou El-Reash, Y.G., Magnetic chitosan modified with cysteine-glutaraldehyde as adsorbent for removal of heavy metals from water. Journal of Environmental Chemical Engineering, 2016. 4(4): p. 3835-3847.
38-Yuan, R., et al., Efficient synthesis of graphene oxide and the mechanisms of oxidation and exfoliation. Applied Surface Science, 2017. 416: p. 868-877.
39-Yu, B., et al., Adsorption behaviors of tetracycline on magnetic graphene oxide sponge. Materials Chemistry and Physics, 2017. 198: p. 283-290.
40-Hosseinzadeh, H. and S. Ramin, Effective removal of copper from aqueous solutions by modified magnetic chitosan/graphene oxide nanocomposites. International Journal of Biological Macromolecules, 2018. 113: p. 859-868.
41-Banazadeh, A., S. Mozaffari, and B. Osoli, Facile synthesis of cysteine functionalized magnetic graphene oxide nanosheets: Application in solid phase extraction of cadmium from environmental sample. Journal of Environmental Chemical Engineering, 2015. 3(4): p. 2801-2808.
42-Shen, Q., et al., Highly sensitive photoelectrochemical cysteine sensor based on reduced graphene oxide/CdS:Mn nanocomposites. Journal of Electroanalytical Chemistry, 2015. 759: p. 61-66.
43-Liu, J., et al., Synthesis of thiol-functionalized magnetic graphene as adsorbent for Cd(II) removal from aqueous systems. Journal of Environmental Chemical Engineering, 2015. 3(2): p. 617-621.
44-Cui, X., et al., Sonochemical fabrication of folic acid functionalized multistimuli-responsive magnetic graphene oxide-based nanocapsules for targeted drug delivery. Chemical Engineering Journal, 2017. 326: p. 839-848.