References:
1. Patsoura, A., D.I. Kondarides, and X.E. Verykios, Photocatalytic degradation of organic pollutants with simultaneous production of hydrogen. Catalysis Today, 2007. 124(3): p. 94-102.
2. Chatterjee, D. and S. Dasgupta, Visible light induced photocatalytic degradation of organic pollutants. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2005. 6(2): p. 186-205.
3. Koohestani, H. and S.K. Sadrnezhaad, Photocatalytic Activity of Immobilized Geometries of TiO2. Journal of Materials Engineering and Performance, 2015. 24(7): p. 2757-2763.
4. Patsoura, A., D.I. Kondarides, and X.E. Verykios, Enhancement of photoinduced hydrogen production from irradiated Pt/TiO2 suspensions with simultaneous degradation of azo-dyes. Applied Catalysis B: Environmental, 2006. 64(3): p. 171-179.
5. Li, Y., G. Lu, and S. Li, Photocatalytic transformation of rhodamine B and its effect on hydrogen evolution over Pt/TiO2 in the presence of electron donors. Journal of Photochemistry and Photobiology A: Chemistry, 2002. 152(1): p. 219-228.
6. Zheng, X.-J., et al., Research on photocatalytic H2 production from acetic acid solution by Pt/TiO2 nanoparticles under UV irradiation. International Journal of Hydrogen Energy, 2009. 34(22): p. 9033-9041.
7. Zieliñska, B., E. Borowiak-Palen, and R.J. Kalenczuk, Photocatalytic hydrogen generation over alkaline-earth titanates in the presence of electron donors. International Journal of Hydrogen Energy, 2008. 33(7): p. 1797-1802.
8. Kiwi, J. and M. Grätzel, Optimization of conditions for photochemical water cleavage. Aqueous platinum/TiO2 (anatase) dispersions under ultraviolet light. The Journal of Physical Chemistry, 1984. 88(7): p. 1302-1307.
9. Kim, J., Y. Park, and H. Park, Solar Hydrogen Production Coupled with the Degradation of a Dye Pollutant Using TiO2 Modified with Platinum and Nafion. International Journal of Photoenergy, 2014. 2014.
10. Wang, X. and X.-y. Li, Photocatalytic hydrogen generation with simultaneous organic degradation by a visible light-driven CdS/ZnS film catalyst. Materials Science and Engineering: B, 2014. 181: p. 86-92.
11. Koohestani, H. and S.K. Sadrnezhaad, Photocatalytic degradation of methyl orange and cyanide by using TiO2/CuO composite. Desalination and Water Treatment, 2016. 57(46): p. 22029-22038.
12. Koohestani, H. and S.K. Sadrnezhaad, Improvement in TiO2 photocatalytic performance by ZrO2 nanocompositing and immobilizing. Desalination and Water Treatment, 2016. 57(58): p. 28450-28459.
13. Li, Y., G. Lu, and S. Li, Photocatalytic production of hydrogen in single component and mixture systems of electron donors and monitoring adsorption of donors by in situ infrared spectroscopy. Chemosphere, 2003. 52(5): p. 843-850.
14. Li, Y., G. Lu, and S. Li, Photocatalytic hydrogen generation and decomposition of oxalic acid over platinized TiO2. Applied Catalysis A: General, 2001. 214(2): p. 179-185.
15. Kim, J., D. Monllor-Satoca, and W. Choi, Simultaneous production of hydrogen with the degradation of organic pollutants using TiO2 photocatalyst modified with dual surface components. Energy & Environmental Science, 2012. 5(6): p. 7647-7656.
16. Konstantinou, I.K. and T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Applied Catalysis B: Environmental, 2004. 49(1): p. 1-14.
17. Koohestani, H., Photocatalytic removal of chromium (VI) by using TiO2 nanoparticles in the presence of cyanide. Scientific Journal Management System, 2018. 10(33): p. 31-38.
18. Li, Y., et al., Photocatalytic hydrogen generation in the presence of glucose over ZnS-coated ZnIn2S4 under visible light irradiation. international journal of hydrogen energy, 2010. 35(13): p. 7116-7126.