[1] T. Jia, W. Wang, F. Long, Z. Fu, H. Wang, and Q. Zhang, “Synthesis, Characterization, and Photocatalytic Activity of Zn-Doped SnO2 Hierarchical Architectures Assembled by Nanocones,” J. Phys. Chem. C, vol. 113, pp. 9071–9077, 2009.
[2] Y. Yuan, Z. Iqbal, and J. Lu, “Zn-doped SnO2 nanoparticles: Structural, optical, dielectric and magnetic properties,” Int. J. Mod. Phys. B, vol. 31, p. 1750234, 2017.
[3] H. Mąka, T. Spychaj, and J. Adamus, “Lewis acid type deep eutectic solvents as catalysts for epoxy resin crosslinking,” RSC Adv., vol. 5, no. 101, pp. 82813–82821, 2015.
[4] G. Singh, N. Kohli, and R. C. Singh, “Sensitive and selective ethanol sensor based on Zn-doped SnO2 nanostructures,” J. Mater. Sci. Mater. Electron., vol. 28, no. 17, pp. 13013–13023, 2017.
[5] H. Wang and A. L. Rogach, “Hierarchical SnO2 Nanostructures: Recent Advances in Design, Synthesis, and Applications,” Chem. Mater., vol. 26, no. 1, pp. 123–133, 2013.
[6] Q. Zhao, D. Ju, X. Deng, J. Huang, B. Cao, and X. Xu, “Morphology-modulation of SnO2 hierarchical architectures by Zn doping for glycol gas sensing and photocatalytic applications,” Sci. Rep., vol. 5, pp. 2–10, 2015.
[7] C. Lu, J. Wang, F. Xu, A. Wang, and D. Meng, “Zn-doped SnO2 hierarchical structures formed by a hydrothermal route with remarkably enhanced photocatalytic performance,” Ceram. Int., vol. 44, no. 13, pp. 15145–15152, 2018.
]8[ م. دوازده امامی، ر. معمار زاده و س. جوادپور, “بررسی نانو کامپوزیت لایه نازک PEDOT:PSS/SnO2 به عنوان حسگر گاز CO “ ، نشریه مواد نوین، سال.4، شماره.2، ص 55-66، زمستان 1392.
[9] X. Jia, Y. Liu, X. Wu, and Z. Zhang, “A low temperature situ precipitation route to designing Zn-doped SnO2 photocatalyst with enhanced photocatalytic performance,” Appl. Surf. Sci., vol. 311, pp. 609–613, 2014.
[10] M. V. Dutka et al., “ Defect ferromagnetism in SnO2 :Zn2+ hierarchical nanostructures: correlation between structural, electronic and magnetic properties ,” RSC Adv., vol. 9, no. 7, pp. 4082–4091, 2019.
[11] K. H. R. Xiaoxia Li, “Development of deep eutectic solvents applied in extraction and separation,” J. Sep. Sci., vol. 39, no. 18, pp. 3505–3520, 2016.
[12] R. K. Smith E, Abbott A, “Deep eutectic solvents (DESs) and their aplications,” Chem. Rev., vol. 114, pp. 11060–11082, 2014.
[13] M. Tohidi, F. A. Mahyari, and A. Safavi, “A seed-less method for synthesis of ultra-thin gold nanosheets by using a deep eutectic solvent and gum arabic and their electrocatalytic application,” RSC Adv., vol. 5, no. 41, pp. 32744–32754, 2015.
[14] C. D. Gu, H. Zheng, X. L. Wang, and J. P. Tu, “Superior ethanol-sensing behavior based on SnO2 mesocrystals incorporating orthorhombic and tetragonal phases,” RSC Adv., vol. 5, no. 12, pp. 9143–9153, 2015.
[15] C. D. Gu, Y. J. Mai, J. P. Zhou, and J. P. Tu, “SnO2 nanocrystallite: novel synthetic route from deep eutectic solvent and lithium storage performance,” Funct. Mater. Lett., vol. 04, no. 04, pp. 377–381, 2012.
[16] D. Shahabi and H. Tavakol, “One-pot synthesis of quinoline derivatives using choline chloride/tin (II) chloride deep eutectic solvent as a green catalyst,” J. Mol. Liq., vol. 220, pp. 324–328, 2016.
[17] C. H. Rohaida et al., “Field Emission Scanning Electron Microscope (Fe-Sem) Facility in Bti,” Mater. Charact., 2016.
[18] A. J. D’Alfonso, B. Freitag, D. Klenov, and L. J. Allen, “Atomic-resolution chemical mapping using energy-dispersive x-ray spectroscopy,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 81, no. 10, pp. 2–5, 2010.
[19] S. Sagadevan and J. Podder, “Investigation on Structural, Surface Morphological and Dielectric Properties of Zn-doped SnO2 Nanoparticles,” Mater. Res., vol. 19, no. 2, pp. 420–425, 2016.
[20] N. Shanmugam, T. Sathya, G. Viruthagiri, C. Kalyanasundaram, R. Gobi, and S. Ragupathy, “Photocatalytic degradation of brilliant green using undoped and Zn doped SnO2 nanoparticles under sunlight irradiation,” Appl. Surf. Sci., vol. 360, pp. 283–290, 2016.
[21] X. Ge, C. Gu, X. Wang, and J. Tu, “Deep eutectic solvents (DESs)-derived advanced functional materials for energy and environmental applications: Challenges, opportunities, and future vision,” J. Mater. Chem. A, vol. 5, no. 18, pp. 8209–8229, 2017.