Investigation of microstructure and wear resistance of AZ31B/SiO2/graphite hybrid surface composite produced by friction stir processing (FSP)

Document Type : Research Paper

Authors

1 Faculty of Materials & Metallurgical Engineering, Semnan University, Iran

2 Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan, Iran

3 , Materials Science and Engineering Department, Faculty of Engineering, Gonabad University, Gonabad, Iran

Abstract

Magnesium hybrid surface composites are widely used in automotive and aerospace industries because they have low weight, high specific strength, and suitable wear properties. In this research, a mixture of silica and graphite nanoparticles was used to produce hybrid surface composites on AZ31B magnesium alloy by the use of friction stir processing (FSP). The effect of FSP passes on microstructure, microhardness, and wear resistance of composites was investigated. According to microstructural investigations, after 4 passes, the particles dispersed well and properly prevented grain growth so that the mean grain size of AZ31B–SiO2–graphite composite decreased about 80% compared with as-received AZ31B and above 50% compared with FSPed as-received AZ31B. Furthermore, in comparison with as-received AZ31B, microhardness of the composite increased more than 17% and its wear resistance increased more than 33% after 4 passes. The results indicated that grain size decrease plays a more significant role in composite hardness than dispersion hardening and other strengthening mechanisms. Furthermore, by increasing FSP passes, grain size variance and hardness variance decreased in the stir zone, which indicates that particles are dispersed and the microstructure becomes homogenized.

Keywords


 
[1] H.E. Friedrich, B.L. Mordike, Magnesium Technology: Metallurgy, Design Data, Automotive Applications, Springer, 2006.           
[2] م. امینی، ح. ثابت، ب. کاربخش راوری، "بررسی تاثیر مقادیر ذرات B4C بر سختی و مقاومت به سایش کامپوزیت Al-SiC-B4C ایجاد شده به روش GTAW بر آلیاژ AA332"، فصلنامه علمی - پژوهشی مواد نوین، 8 (2018) 123-140.         
[3] H.Q. Sun, Y.N. Shi, M.X. Zhang, Wear behaviour of AZ91D magnesium alloy with a nanocrystalline surface layer, Surface and Coatings Technology, 202 (2008) 2859-2864.    
[4] C.J. Lee, J.C. Huang, P.J. Hsieh, Mg based nano-composites fabricated by friction stir processing, Scripta Materialia, 54 (2006) 1415-1420.      
[5] ف. زرقانی، س.م. موسوی زاده، غ. ابراهیمی، ح. عزت پور، "تاثیر زمان نگهداری و قطر شانه ابزار بر استحکام و رفتار شکست فرآیند جوشکاری اصطکاکی اغتشاشی نقطه‌ای زائده‌ای آلیاژآلومینیوم 2024"، فصلنامه علمی - پژوهشی مواد نوین، 8 (2018) 13-30.
[6] D. Khayyamin, A. Mostafapour, R. Keshmiri, The effect of process parameters on microstructural characteristics of AZ91/SiO2 composite fabricated by FSP, Materials Science and Engineering: A, 559 (2013) 217-221.         
[7] Y. Morisada, H. Fujii, T. Nagaoka, M. Fukusumi, Effect of friction stir processing with SiC particles on microstructure and hardness of AZ31, Materials Science and Engineering: A, 433 (2006) 50-54.  
[8] Z.Y. Ma, Friction Stir Processing Technology: A Review, Metallurgical and Materials Transactions A, 39 (2008) 642-658.
[9] ح. مسرور، ک. جانقربان، ح. دانش منش، بررسی ریزساختار و سختی کامپوزیت سطحی AA5086(H116)/ZrO2 و کامپوزیت هیبریدی سطحی AA5086(H116)/ZrO2/Gr ساخته شده توسط فرآیند اصطکاکی اغتشاشی، فصلنامه علمی - پژوهشی مواد نوین، 6 (2016) 101-114.    
[10] R.S. Mishra, Z.Y. Ma, Friction stir welding and processing, Materials Science and Engineering: R: Reports, 50 (2005) 1-78.
[11] ا. ربیعی زاده، ا. افسری، م. محمدی، "تولید و بررسی خواص نانو کامپوزیت سطحی آلومینیوم/ نانولوله کربنی (Al-CNT) تولید شده با فرآیند اصطکاکی- اغتشاشی"، فصلنامه علمی - پژوهشی مواد نوین، 1 (2010) 13-24.
[12] م. زاد علی، م. کوتیانی، خ. رنجبر، "تولید کامپوزیت درجای Al3003/Al3Ti با استفاده از ذرات عنصری تیتانیم توسط فرآیند اصطکاکی اغتشاشی"، فصلنامه علمی - پژوهشی مواد نوین، 8 (2018) 57-70.          
[13] S. Sahraeinejad, H. Izadi, M. Haghshenas, A. Gerlich, Fabrication of metal matrix composites by friction stir processing with different particles and processing parameters, Materials Science and Engineering: A, 626 (2015) 505-51.
[14] I. Dinaharan, R. Nelson, S. Vijay, E.T. Akinlabi, Microstructure and wear characterization of aluminum matrix composites reinforced with industrial waste fly ash particulates synthesized by friction stir processing, Materials Characterization, 118 (2016) 149-158.
[15] E.R. Mahmoud, M. Takahashi, T. Shibayanagi, K. Ikeuchi, Wear characteristics of surface-hybrid-MMCs layer fabricated on aluminum plate by friction stir processing, Wear, 268 (2010) 1111-1121.
[16] H. Esmaily, A. Habibolahzade, M. Tajally, Parametric investigation of Al5456/BNi-2 composite properties fabricated by friction stir processing, Journal of Alloys and Compounds, 725 (2017) 1044-1054.  
[17] K. Sun, Q.Y. Shi, Y.J. Sun, G.Q. Chen, Microstructure and mechanical property of nano-SiCp reinforced high strength Mg bulk composites produced by friction stir processing, Materials Science and Engineering: A, 547 (2012) 32-37
.
[18] M. Habibnejad-Korayem, R. Mahmudi, H.M. Ghasemi, W.J. Poole, Tribological behavior of pure Mg and AZ31 magnesium alloy strengthened by Al2O3 nano-particles, Wear, 268 (2010) 405-412.
[19] H. Sarmadi, A.H. Kokabi, S.M. Seyed Reihani, Friction and wear performance of copper–graphite surface composites fabricated by friction stir processing (FSP), Wear, 304 (2013) 1-12.
[20] I. Dinaharan, R. Sathiskumar, N. Murugan, Effect of ceramic particulate type on microstructure and properties of copper matrix composites synthesized by friction stir processing, Journal of Materials Research and Technology, 5 (2016) 302-316.   
[21] A. Ghasemi-Kahrizsangi, S. Kashani-Bozorg, M. Moshref-Javadi, Effect of friction stir processing on the tribological performance of Steel/Al2O3 nanocomposites, Surface and Coatings Technology, 276 (2015) 507-515.    
[22] H. Farnoush, A.A. Bastami, A. Sadeghi, J.A. Mohandesi, F. Moztarzadeh, Tribological and corrosion behavior of friction stir processed Ti-CaP nanocomposites in simulated body fluid solution, Journal of the mechanical behavior of biomedical materials, 20 (2013) 90-97.        
[23] A. Shamsipur, S.F. Kashani-Bozorg, A. Zarei-Hanzaki, The effects of friction-stir process parameters on the fabrication of Ti/SiC nano-composite surface layer, Surface and Coatings Technology, 206 (2011) 1372-1381.  
[24] B. Li, Y. Shen, L. Luo, W. Hu, Fabrication of TiCp/Ti–6Al–4V surface composite via friction stir processing (FSP): Process optimization, particle dispersion-refinement behavior and hardening mechanism, Materials Science and Engineering: A, 574 (2013) 75-85.
[25] G.L. You, N.J. Ho, P.W. Kao, In-situ formation of Al2O3 nanoparticles during friction stir processing of AlSiO2 composite, Materials Characterization, 80 (2013) 1-8            .
[26] D. Ahmadkhaniha, M. Fedel, M. Heydarzadeh Sohi, A. Zarei Hanzaki, F. Deflorian, Corrosion behavior of magnesium and magnesium–hydroxyapatite composite fabricated by friction stir processing in Dulbecco’s phosphate buffered saline, Corrosion Science, 104 (2016) 319-329.
[27] Z.Y. Zhang, R. Yang, Y. Li, G. Chen, Y.T. Zhao, M.P. Liu, Microstructural evolution and mechanical properties of friction stir processed ZrB2/6061Al nanocomposites, Journal of Alloys and Compounds, 762 (2018) 312-318.
[28] M. Azizieh, A.H. Kokabi, P. Abachi, Effect of rotational speed and probe profile on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing, Materials & Design, 32 (2011) 2034-2041.     
[29] D. Lu, Y. Jiang, R. Zhou, Wear performance of nano-Al2O3 particles and CNTs reinforced magnesium matrix composites by friction stir processing, Wear, 305 (2013) 286-290.
[30] M.M. Jalilvand, Y. Mazaheri, A. Heidarpour, M. Roknian, Development of A356/Al2O3 + SiO2 surface hybrid nanocomposite by friction stir processing, Surface and Coatings Technology, 360 (2019) 121-132.           
[31] H.S. Arora, H. Singh, B.K. Dhindaw, H.S. Grewal, Some investigations on friction stir processed zone of AZ91 alloy, Transactions of the Indian Institute of Metals, 65 (2012) 735-739.     
[32] N. Bhadouria, P. Kumar, L. Thakur, S. Dixit, N. Arora, A Study on Micro-hardness and Tribological Behaviour of Nano-WC–Co–Cr/Multi-walled Carbon Nanotubes Reinforced AZ91D Magnesium Matrix Surface Composites, Transactions of the Indian Institute of Metals, 70  (2017) 2477-2483.           
[33] I. Aatthisugan, A. Razal Rose, D. Selwyn Jebadurai, Mechanical and wear behaviour of AZ91D magnesium matrix hybrid composite reinforced with boron carbide and graphite, Journal of Magnesium and Alloys, 5 (2017) 20-25.
[34] M. Dadashpour, A. Mostafapour, R. Yeşildal, S. Rouhi, Effect of process parameter on mechanical properties and fracture behavior of AZ91C/SiO2 composite fabricated by FSP, Materials Science and Engineering: A, 655 (2016) 379-387.
[35] G. Faraji, P. Asadi, Characterization of AZ91/alumina nanocomposite produced by FSP, Materials Science and Engineering: A, 528 (2011) 2431-2440.
[36] P. Asadi, G. Faraji, M.K. Besharati, Producing of AZ91/SiC composite by friction stir processing (FSP), The International Journal of Advanced Manufacturing Technology, 51 (2010) 247-260.
[37] F.J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena, Elsevier, 2012.    
[38] J.R. Davis, Surface engineering for corrosion and wear resistance, ASM international, 2001. 
[39] N. Chawla, K. Chawla, Metal-matrix composites in ground transportation, JoM, 58 (2006) 67-70.    
[40] A. Devaraju, A. Kumar, B. Kotiveerachari, Influence of addition of Grp/Al2O3p with SiCp on wear properties of aluminum alloy 6061-T6 hybrid composites via friction stir processing, Transactions of Nonferrous Metals Society of China, 23 (2013) 1275-1280.
[41] P.J. Blau, ASM Handbook: Friction, Lubrication, and Wear Technology. vol. 18, 1992.