1- Tong, H., Ouyang, S., Bi, Y., Umezawa, N., Oshikiri, M., Ye, J.H., Nano-photocatalyticmaterials: possibilities and challenges, Advanced Materials Vol. 24, pp. 229–251, 2012.
2- Xiang, Q.J., Yu, J.G., Jaroniec, M., Graphene-based semiconductor photocatalysts, Chemical Society Reviews, Vol. 41 pp. 782–796, 2012.
3- Liu, G., Yu, J.C., Lu, G.Q., Cheng, H.M., Crystal facet engineering of semiconductorphotocatalysts-motivations, advances and unique properties, Chem. Commun. Vol. 47 pp. 6763–6783, 2011.
4- Fujishima, A., Honda, K., Electrochemical photolysis of water at a semiconductor electrode, Nature Vol. 238 pp. 37–38, 1972.
5- Zhou, P., Yu, J.G., Jaroniec, M., All-solid-state Z-scheme photocatalytic systems,Adv. Mater. Vol. 26 pp. 4920–4935, 2014.
6- Reddy, K.R., Hassan, M., Gomes, V.G., Hybrid nanostructures based on titaniumdioxide for enhanced photocatalysis, Appl. Catal. A: Gen. Vol. 489 pp. 1–16, 2015.
7- Li, X., Wen, J.Q., Low, J.X., Fang, Y.P., Yu, J.G., Design and fabrication of semicon-ductor photocatalyst for photocatalytic reduction of CO2 to solar fuel, Sci. China Mater. Vol. 57 pp. 70–100, 2014.
8- Yang, Y., Liu, G., Irvine, J.T., Cheng, H.M., Enhanced photocatalytic H2 production in core–shell engineered rutile TiO2, Adv. Mater. Vol. 28, pp. 5850–5856, 2016.
9- Azimi-Fouladi, A., Hassanzadeh-Tabrizi, S.A., Saffar-Teluri, A., Sol-gel synthesis and characterization of TiO2-CdO-Ag nanocomposite with superior photocatalytic efficiency, Ceram. Int. Vol. 44 pp. 4292–4297, 2018.
10- Wang, X., Chen, X., Thomas, A., Fu, X., Antonietti, M., Metal-containing carbon nitride compounds: a new functional organic–metal hybrid material, Adv. Mater. Vol. 21 pp. 1609–1612, 2009.
11- Zhu, Z., Lu, Z., Wang, D., Tang, X., Yan, Y., Shi, W., Dong, H., Construction of high dispersed Ag/Fe3O4/g-C3N4 photocatalyst by selective photo-deposition and improved photocatalytic activity, Appl. Catal. B Vol. 182 pp. 115–122, 2016.
12- Tonda, S., Kumar, S., Kandula, S., Shanker, V., Fe-doped and-mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight, J. Mater. Chem. A, Vol. 2 pp. 6772–6780, 2014.
13- Kumar, S., Kumar, B., Baruah, A., Shanker, V., Synthesis of magnetically separable and recyclable g-C3N4–Fe3O4 hybrid nanocomposites with enhanced photocatalytic performance under visible-light irradiation, J. Phys. Chem. C Vol. 117 pp. 26135–26143, 2013.
14- Zhang, Y., Shen, C., Lu, X., Mu, X., & Song, P.. Effects of defects in g-C3N4 on excited-state charge distribution and transfer: Potential for improved photocatalysis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 227, pp. 117687, 2020.
15- Tang, J., Zhou, W., Guo, R., Huang, C., Pan, W. and Liu, P., An exploration on in-situ synthesis of europium doped g-C3N4 for photocatalytic water splitting. Energy Procedia, Vol. 158, pp.1553-1558, 2019.
16- Zhou, D. and Qiu, C., Study on the effect of Co doping concentration on optical properties of g-C3N4. Chemical Physics Letters, Vol. 728, pp.70-73, 2019.
17- Yang, P., Wang, J., Yue, G., Yang, R., Zhao, P., Yang, L., Zhao, X. and Astruc, D., Constructing mesoporous g-C3N4/ZnO nanosheets catalyst for enhanced visible-light driven photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, Vol. 388, pp. 112169, 2020.
18- Ullah, N., Chen, S. and Zhang, R., Mechanism of the charge separation improvement in carbon-nanodot sensitized g-C3N4. Applied Surface Science, Vol. 487, pp.151-158, 2019.
19- Tang, Q., Sun, Z., Deng, S., Wang, H. and Wu, Z., Decorating g-C3N4 with alkalinized Ti3C2 MXene for promoted photocatalytic CO2 reduction performance. Journal of Colloid and Interface Science, Vol. 564 pp. 406-417, 2020.
20- Bian, Z., Tachikawa, T., Zhang, P., Fujitsuka, M., Majima, T., Au/TiO2 superstructurebased plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity, J. Am. Chem. Soc. Vol. 136 pp. 458–465, 2013.
21- Li, J., Cushing, S.K., Bright, J., Meng, F., Senty, T.R., Zheng, P., Wu, N., Ag@Cu2O coreshell nanoparticles as visible-light plasmonic photocatalysts, ACS Catal. Vol. 3 pp. 47–51, 2012.
22- Xu, J., Zhang, L., Shi, R., Zhou, Y.F., Chemical exfoliation of graphitic carbonnitride for efficient heterogeneous photocatalysis, J. Mater. Chem. A Vol. 1 pp. 14766–14772, 2013.
23- Hu, J., Xie, W., Chen, X., Li, X., A review on g-C3N4-based photocatalysts, Applied Surface Science, Sci Vol. 391 pp. (2017) 72–123.
24- Ma, Y., Enzhou, L., Xiaoyun, H., Chunni, T., Jun, W., Juan, L., Jun, F., A simple process to prepare few-layer g-C3N4 nanosheets with enhanced photocatalytic activities, Applied Surface Science, Vol. 358 pp. 246-2512015.
25- Hassanzadeh-Tabrizi, S.A., Nguyen, C.C. and Do, T.O.,. Synthesis of Fe2O3/Pt/Au nanocomposite immobilized on g-C3N4 for localized plasmon photocatalytic hydrogen evolution. Applied Surface Science Vol. 489, pp. 741-754, 2019.
26- Linic, S., Christopher, P., Ingram, D.B., Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy, Nature Materials, Vol. 10, pp. 911, 2011.
27- Hayashi, T., Nakamura, K., Suzuki, T., Saito, N. and Murakami, Y., OH radical formation by the photocatalytic reduction reactions of H2O2 on the surface of plasmonic excited Au-TiO2 photocatalysts. Chemical Physics Letters, Vol. 739, pp.136958, 2020.
28- Wang, F., Jiang, Y., Lawes, D.J., Ball, G.E., Zhou, C., Liu, Z., Amal, R., Analysis of the promoted activity and molecular mechanism of hydrogen production over fine Au–Pt alloyed TiO2 photocatalysts, ACS Catalysis,Vol. 5, pp. 3924–3931, 2015.
29- ح. کوهستانی "تولید فتوکاتالیستی هیدروژن از پساب صنعتی حاوی آلاینده های آلی توسط نانوکامپوزیت TiO2/ZrO2"مجله مواد نوین، جلد 9، شماره2، ص 154-147، زمستان 1397.
30- Wang, L., Hong, Y., Liu, E., Wang, Z., Chen, J., Yang, S., Wang, J., Lin, X. and Shi, J., Rapid polymerization synthesizing high-crystalline g-C3N4 towards boosting solar photocatalytic H2 generation. International Journal of Hydrogen Energy, In Press 2020.
31- Hassanzadeh-Tabrizi, S.A. and Do, T.O., Sol–gel synthesis and photocatalytic activity of ZnO–Ag–Sm nanoparticles for water treatment. Journal of Materials Science: Materials in Electronics, Vol. 29, pp. 10986-10991, 2018.
32- Lu, L., Luo, Z., Xu, T. and Yu, L., Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells. Nano letters, Vol. 13(1), pp.59-64, 2012.
33- Chen, J.J., Wu, J.C., Wu, P.C. and Tsai, D.P., Plasmonic photocatalyst for H2 evolution in photocatalytic water splitting. The Journal of Physical Chemistry C, Vol. 115(1), pp.210-216, 2010.