[1]E. Y. L. Teo, L. Muniandy, E.-P. Ng, F. Adam, A. R. Mohamed, R. Jose, et al., "High surface area activated carbon from rice husk as a high performance supercapacitor electrode," Electrochimica Acta, vol. 192, pp. 110-119, 2016.
[2]E. Frackowiak and F. Beguin, "Carbon materials for the electrochemical storage of energy in capacitors," Carbon, vol. 39, pp. 937-950, 2001.
[3]S. Bashkova, F. S. Baker, X. Wu, T. R. Armstrong, and V. Schwartz, "Activated carbon catalyst for selective oxidation of hydrogen sulphide: on the influence of pore structure, surface characteristics, and catalytically-active nitrogen," Carbon, vol. 45, pp. 1354-1363, 2007.
[4]B. Viswanathan, P. I. Neel, and T. Varadarajan, "Methods of activation and specific applications of carbon materials," India, Chennai, 2009.
[5]N. Soltani, A. Bahrami, M. Pech-Canul, and L. González, "Review on the physicochemical treatments of rice husk for production of advanced materials," Chemical engineering journal, vol. 264, pp. 899-935, 2015.
[6]Y. Li, F. Wang, J. Liang, X. Hu, and K. Yu, "Preparation of disordered carbon from rice husks for lithium-ion batteries," New Journal of Chemistry, vol. 40, pp. 325-329, 2016.
[7]F. Zhang, S. Cheng, D. Pant, G. Van Bogaert, and B. E. Logan, "Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell," Electrochemistry Communications, vol. 11, pp. 2177-2179, 2009.
[8]N. A. Travlou, M. Seredych, E. Rodríguez-Castellón, and T. J. Bandosz, "Activated carbon-based gas sensors: effects of surface features on the sensing mechanism," Journal of Materials Chemistry A, vol. 3, pp. 3821-3831, 2015.
[9]I. Mochida, Y. Korai, M. Shirahama, S. Kawano, T. Hada, Y. Seo, et al., "Removal of SOx and NOx over activated carbon fibers," Carbon, vol. 38, pp. 227-239, 2000.
[10]A. Bhatnagar, W. Hogland, M. Marques, and M. Sillanpää, "An overview of the modification methods of activated carbon for its water treatment applications," Chemical Engineering Journal, vol. 219, pp. 499-511, 2013.
[11]آمنه اسحاقی، سام حائری پور، تخریب فتوکاتالیستی رنگ راکتیو قرمز 198 توسط نانو کتمپوزیت دی اکسید تیتانیم-کربن فعال مواد نوین، دوره 7، شماره 26 زمستان 1395، ص 35-48.
[12] J. Wang and S. Kaskel, "KOH Activation of Carbon-based materials for energy storage", Journal of materials chemistry, vol. 22, 23710, 2012.
[13]A. Salanti, L. Zoia, M. Orlandi, F. Zanini, and G. Elegir, "Structural characterization and antioxidant activity evaluation of lignins from rice husk," Journal of agricultural and food chemistry, vol. 58, pp. 10049-10055, 2010.
[14]T. H. Liou, P. Y. Wang, "Utilization of rice husk wastes in synthesis of graphene oxide-based carbonaceous nanocomposites", Waste Management, vol. 108, pp. 51-61, 2020.
[15]G. Athira, A. Bahurudin, S. Appari, "Sustainable alternatives to carbon-intensive paddy ", Journal of cleaner production, vol. 236, 117598, 2019.
[16]M. Azadeh, C. Zamani, A. Ataie, J. R. Morante, and N. Setoudeh, "Role of the
milling parameters on the mechano-chemically synthesized mesoporous nanosilicon porperties for Li-ion batteries anode", Journal of physics and chemistry of solids, vol. 139, 109318, 2020.
[17]T. H. Liou, "Evolution of chemistry and Morphology during carbonization and combustion of rice husk", Carbon, vol. 42, pp. 785-794, 2004.
[18]M. Azadeh, C. Zamani, and A. Ataie, "Synthesis of Si/MgO/Mg2SiO4 Composite from Rice Husk-Originated Nano-Silica," Journal of Ultrafine Grained and Nanostructured Materials, vol. 49, pp. 92-96, 2016.
[19]M. Azadeh, C. Zamani, A. Ataie, and J. Morante, "Three-dimensional Rice husk-Originated Mesoporous Silicon and its Electrical Properties," Materials Today Communications, vol. 14, pp. 141-150, 2018.
[20]D. Kalderis, S. Bethanis, P. Paraskeva, and E. Diamadopoulos, "Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times," Bioresource technology, vol. 99, pp. 6809-6816, 2008.
[21]Y. Liu, Y. Guo, Y. Zhu, D. An, W. Gao, Z. Wang, et al., "A sustainable route for the preparation of activated carbon and silica from rice husk ash," Journal of hazardous materials, vol. 186, pp. 1314-1319, 2011.
[22]A. C. Lua and T. Yang, "Effect of activation temperature on the textural and chemical properties of potassium hydroxide activated carbon prepared from pistachio-nut shell," Journal of colloid and interface science, vol. 274, pp. 594-601, 2004.
[23]X. Peng, J. Fu, C. Zhang, J. Tao, L. Sun, and P. K. Chu, "Rice Husk-Derived Activated Carbon for Li Ion Battery Anode," Nanoscience and Nanotechnology Letters, vol. 6, pp. 68-71, 2014.
[24]J. Alvarez, G. Lopez, M. Amutio, J. Bilbao, and M. Olazar, "Upgrading the rice husk char obtained by flash pyrolysis for the production of amorphous silica and high quality activated carbon," Bioresource technology, vol. 170, pp. 132-137, 2014.
[25]L. Chen, Y. Zhang, C. Lin, W. Yang, Y. Meng, Y. Guo, et al., "Hierarchically porous nitrogen-rich carbon derived from wheat straw as an ultra-high-rate anode for lithium ion batteries," Journal of Materials Chemistry A, vol. 2, pp. 9684-9690, 2014.
[26]S.-W. Han, D.-W. Jung, J.-H. Jeong, and E.-S. Oh, "Effect of pyrolysis temperature on carbon obtained from green tea biomass for superior lithium ion battery anodes," Chemical Engineering Journal, vol. 254, pp. 597-604, 2014.
[27]S.-X. Wang, L. Yang, L. P. Stubbs, X. Li, and C. He, "Lignin-derived fused electrospun carbon fibrous mats as high performance anode materials for lithium ion batteries," ACS applied materials & interfaces, vol. 5, pp. 12275-12282, 2013