Investigation of abnormal tensile behavior of DIN 16MnCr5 low carbon low alloy steel under ferrite-martensite dual-phase microstructures in comparison with full martensitic condition

Document Type : Research Paper

Authors

1 department of mining and metallurgical engineering, Yazd university, Yazd, Iran

2 department of mining and metallurgical engineering, yazd university, yazd, iran

Abstract

In this research, the microstructures and mechanical properties of DIN 16MnCr5 low alloy steel under ferrite-martensite dual-phase (with various martensite volume fraction) were compared to full martensitic condition. Dual-phase microstructures were developed by inter-critical annealing. For this purpose, the samples were heated at various inter-critical temperatures (from 740 to 840 °C) for 60 minutes and then water quenching to room temperature. Also, to develop full martensitic microstructure, steel samples were immediately quenched in water after austenitization at 900 ˚C for 60 minutes. The microstructure and mechanical properties of the specimens were analyzed by scanning electron microscope equipped with EDS analyzer, X-ray diffraction and tensile and microhardness tests, respectively. Metallographic observations showed that by increasing the inter-critical annealing temperature from 740 to 840 °C, the martensite volume fraction (Vm) increased from 23 to 87%. Comparison of mechanical properties of dual-phase samples showed that by increasing Vm from 23% to 87%, there was an abnormal tensile behavior at Vm=73%, so that the energy absorption capability (product of tensile strength and uniform elongation) for ferrite-martensite dual-phase samples is much higher than to full martensitic samples. This remarkable modification in the mechanical properties of the dual-phase samples is due to the different hardening responses of the ferrite and martensite microconstituents because of the interaction between them. By increasing the Vm from 23 to 87%, the martensite microhardness decreased continuously from 717 to 471 HV10g, while the ferrite microhardness showed a peak value at Vm=73%.

Keywords


[1]        J. Zhao, Z. Jiang, ''Thermomechanical Processing of Advanced High Strength Steels'', Progress in Materials Science, Vol. 94, pp. 174-242, 2018.         
[2]        Q. Lai, O. Bouaziz, M. Gouné, L. Brassart, M. Verdier, G. Parry, A. Perlade, Y. Bréchet, T. Pardoen, ''Damage and Fracture of Dual-Phase Steels: Influence of Martensite Volume Fraction'', Materials Science and Engineering A, Vol. 646, pp. 322-331, 2015.
[3]        H. Ashrafi, M. Shamanian, R. Emadi, N. Saeidi, ''A Novel and Simple Technique for Development of Dual Phase Steels with Excellent Ductility'', Materials Science and Engineering A. Vol. 680, pp. 197-202, 2017.           
[4]        N. Fonstein, Advanced High Strength Sheet Steels: Physical Metallurgy, Design, Processing, and Properties, 1st ed., p. 3, Springer, Switzerland, 2015.           
 [5]       G. Rosenberg, I. Sinaiova, L. Juhar, '' Effect of Microstructure on Mechanical Properties of Dual Phase Steels in the Presence of Stress Concentrators'', Materials Science and Engineering A, Vol. 582, pp. 347-358, 2013.
 [6]       م. پورانوری، پ. مرعشی، "تغییر حالت شکست از فصل مشترکی به محیطی در جوش‌های مقاومتی نقطه‌ای مشابه و نامشابه فولاد دوفازی DP600 و فولاد کم کربنAISI1008 "، مجله مواد نوین، جلد 2، شماره 4، ص 15-29، تابستان 1391. 
[7]        E. Fereiduni, S. S. Ghasemi Banadkouki, ''Ferrite Hardening Response in a Low Alloy Ferrite–Martensite Dual Phase Steel'', Journal of Alloys and Compounds, Vol. 589, pp. 288-294, 2014.
[8]        Y. Mazaheri, A. Kermanpur, A. Najafizadeh, ''Microstructures, Mechanical Properties, and Strain Hardening Behavior of an Ultrahigh Strength Dual Phase Steel Developed by Intercritical Annealing of Cold-Rolled Ferrite/Martensite'', Metallurgical and Materials Transactions A, Vol. 46, pp. 3052-3062, 2015.    
[9]        E. Fereiduni, S. S. Ghasemi Banadkouki, '' Reliability/Unreliability of Mixture Rule in a Low Alloy Ferrite–Martensite Dual Phase Steel'', Journal of Alloys and Compounds, Vol. 577, pp. 351-359, 2013.   
[10]      A. Bag, K. K. Ray, E. S. Dwarakadasa, '' Influence of Martensite Content and Morphology on Tensile and Impact Properties of High-Martensite Dual-Phase Steels'', Metallurgical and Materials Transactions A, Vol. 30A, pp. 1193-1202, 1999.    
[11]      P. Movahed, S. Kolahgar, S. P. H. Marashi, M. Pouranvari, N. Parvin, ''The Effect of Intercritical Heat Treatment Temperature on the Tensile Properties
and Work Hardening Behavior of Ferrite–Martensite Dual Phase Steel Sheets'', Materials Science and Engineering A, Vol. 518, pp. 1-6, 2009.        
[12]      م. کاشفی، ص. قاسمی بنادکوکی، "مقایسه ریزساختار و رفتار مکانیکی فولاد Mo40 در شرایط دوفازی فریتی- مارتنزیتی و کوئنچ مستقیم بازگشت داده شده"، مجله مواد نوین، جلد 9، شماره 1، ص 77-87، پاییز 1397.        
[13]      G. R. Speich, V. A. Demarest, R. L. Miller, ''Formation of Austenite During Intercritical Annealing of Dual-Phase Steels'', Metallurgical Transactions A, Vol. 12A, pp. 1419-1428, 1981.
[14]      A. Ebrahimian, S. S. Ghasemi Banadkouki, ''Mutual Mechanical Effects of Ferrite and Martensite in a Low Alloy
Ferrite-Martensite Dual Phase Steel'', Journal of Alloys and Compounds, Vol. 708, pp. 43-54, 2017.        
[15]      م. رشیدی، م. ع. بوترابی، "اثر پارامترهای عملیات حرارتی دوفازی‌سازی بر ریزساختار چدن نشکن آلومینیوم‌دار، مجله مواد نوین، جلد 4، شماره 2، ص 67-78، زمستان 1392.
[16]      R. G. Davies, ''Influence of Martensite Composition and Content on the Properties of Dual Phase Steels'', Metallurgical Transactions A, Vol. 9A, pp. 671-679, 1978. 
[17]      Handbook Committee, Alloy Phase Diagrams, p. 527, ASM International, USA, 1992.    
[18]      A. P. Pierman, O. Bouaziz, T. Pardoen, P. J. Jacques, L. Brassart, ''The Influence of Microstructure and Composition on the
Plastic Behaviour of Dual-Phase Steels'', Acta Materialia, Vol. 73, pp. 298-311, 2014.
[19]      A. H. Jahanara, Y. Mazaheri, M. Sheikhi, ''Correlation of Ferrite and Martensite Micromechanical Behavior with Mechanical Properties of Ultrafine Grained Dual Phase Steels'', Materials Science and Engineering A, Vol. 764, pp. 138206, 2019. 
[20]      ع. یزدی زاده خلیلی، ص. قاسمی بنادکوکی، ح. ر. کریمی زارچی، م. مصلایی‌پور، "بررسی تأثیر نامتعارف میکروساختارهای دوفازی فریتی-بینیتی بر اصلاح خواص مکانیکی فولاد کم‌آلیاژ Mo40 در مقایسه با شرایط تمام بینیتی"، مجله مواد نوین، جلد 10، شماره 1، ص 133-147، پاییز 1398.        
[21]      G. Krauss, Steels: Processing, Structure, and Performance, 2nd ed., p. 488, ASM International, Ohio, 2015.
[22]      H. Bhadeshia, "A Rationalisation of Shear Transformations in Steels", Acta Metallurgica, Vol. 29, pp. 1117-1130, 1981.
[23]      S. S. Ghasemi Banadkouki, E. Fereiduni, "Effect of Prior Austenite Carbon Partitioning on Martensite Hardening Variation in a Low Alloy Ferrite–Martensite Dual Phase Steel", Materials Science and Engineering A, Vol. 619, pp. 129-136, 2014.        
[24]      K. T. Park, S. Y. Han, B. D. Ahn, D. H. Shin, Y. K. Lee, K. K. Um, ''Ultrafine Grained Dual Phase Steel Fabricated by Equal Channel Angular Pressing and Subsequent Intercritical Annealing'', Scripta Materialia, Vol. 51, pp. 909-913, 2004.   
[25]      T. Sakaki, K. Sugimoto, T. Fukuzato, "Role of Internal Stress for Continuous Yielding of Dual-Phase Steels'', Acta Metallurgica, Vol. 31, pp. 1737-1746, 1983.   
[26]      H. Ghassemi-Armaki, R. Maaß, S. P. Bhat, S. Sriram, J .R. Greer, K. S. Kumar, ''Deformation Response of Ferrite and Martensite in a Dual-Phase Steel'', Acta Materialia, Vol. 62, pp. 197-211, 2014.
[27]      M. Mazinani, W. J. Poole, ''Effect of Martensite Plasticity on the Deformation Behavior of a Low-Carbon Dual-Phase Steel'', Metallurgical and Materials Transactions A, Vol. 38A, pp. 328-339, 2007.      
[28]      Y. L. Kang, Q. H. Han, X. M. Zhao, M. H. Cai ''Influence of Nanoparticle Reinforcements on the Strengthening Mechanisms of an Ultrafine-Grained Dual Phase Steel Containing Titanium'', Materials and Design, Vol. 44, pp. 331-339, 2013.  
[29]      J. Kadkhodapour, A. Butz, S. Ziaei Rad, ''Mechanisms of Void Formation During Tensile Testing in a Commercial, Dual-Phase Steel'', Acta Materialia, Vol. 59, pp. 2575-2588, 2011.
[30]      H. Ashrafi, M. Shamanian, R. Emadi, N. Saeidi, ''Correlation of Tensile Properties and Strain Hardening Behavior with Martensite Volume Fraction in Dual-Phase Steels'', Transactions of the Indian Institute of Metals, Vol. 70, pp. 1575-1584, 2017.           
[31]      S. Sodjit, V. Uthaisangsuk, ''Microstructure Based Prediction of Strain Hardening Behavior of Dual Phase Steels'', Materials and Design, Vol. 41, pp. 370-379, 2012.    
[32]      C. Y. Chen, C. H. Li, T. C. Tsao, P. H. Chiu, S. P. Tsai, J. R. Yang, L. J. Chiang, S. H. Wang, ''A Novel Technique for Developing a Dual-Phase Steel with a Lower Strength Difference Between Ferrite and Martensite'', Materials Today Communications, Vol. 23, In Press, 2020.
[33]      Y. Mazaheri, A. Kermanpur, A. Najafizadeh, N. Saeidi, ''Effects of Initial Microstructure and Thermomechanical Processing Parameters on Microstructures and Mechanical Properties of Ultrafine Grained Dual Phase Steels'', Materials Science and Engineering A, Vol. 612, pp. 54-62, 2014.        
[34]      M. Calcagnotto, Y. Adachi, D. Ponge, D. Raabe, ''Deformation and Fracture Mechanisms in Fine- and Ultrafine-Grained Ferrite/Martensite Dual-Phase Steels and the Effect of Aging'', Acta Materialia, Vol. 59, pp. 658-670, 2011.           
[35]      Y. I. Son, Y. K. Lee, K. T. Park, C. S. Lee, D. H. Shin, ''Ultrafine Grained Ferrite Martensite Dual Phase Steels Fabricated via Equal Channel Angular Pressing: Microstructure and Tensile Properties'', Acta Materialia, Vol. 53, pp. 3125-3134, 2005.           
[36]      N. Saeidi, F. Ashrafizadeh, B. Niroumand, ''Development of a New Ultrafine Grained Dual Phase Steel and Examination of the Effect of Grain Size on Tensile Deformation Behavior'', Materials Science and Engineering A, Vol. 599, pp. 145-149, 2014.
[37]      J. Zhang, H. Di, Y. Deng, R. D. K. Misra, ''Effect of Martensite Morphology and Volume Fraction on Strain Hardening and Fracture Behavior of Martensite–Ferrite Dual Phase Steel'', Materials Science and Engineering A, Vol. 627, pp. 230-240, 2015.
[38]      A. Ghatei Kalashami, A. Kermanpur, A. Najafizadeh, Y. Mazaheri, ''Effect of Nb on Microstructures and Mechanical Properties of an Ultrafine-Grained Dual Phase Steel'', Journal of Materials Engineering and Performance, Vol. 24, pp. 3008-3017, 2015. 
[39]      E. Ahmad, T. Manzoor, M. M. A. Ziai, N. Hussain, ''Effect of Martensite Morphology on Tensile Deformation of Dual-Phase Steel'', Journal of Materials Engineering and Performance, Vol. 21, pp. 382-387, 2012.  
[40]      Y. G. Deng, H. S. Di, J. C. Zhang, ''Effect of Heat-Treatment Schedule on the Microstructure and Mechanical Properties of Cold-Rolled Dual-Phase Steels'', Acta Metallurgica Sinica, Vol. 28, pp. 1141-1148, 2015.  
[41]      E. Ahmad, T. Manzoor, N. Hussain, "Thermomechanical Processing in the Intercritical Region and Tensile Properties of Dual-Phase Steel", Materials Science and Engineering A, Vol. 508, pp. 259-265, 2009.           
[42]      H. Azizi-Alizamini, M. Militzer, W. J. Poole, "Formation of Ultrafine Grained Dual Phase Steels through Rapid Heating", ISIJ International, Vol. 51, pp. 958-964, 2011.