Synthesis of nickel-cobalt-aluminum/graphene nanocomposite and its electrochemical performance as supercapacitor

Document Type : Research Paper

Authors

1 Department of Material Science and Engineering, Imam Khomeini International University,Qazvin

2 Department of Material Science and Engineering, Imam Khomeini Inernational University, Qazvin

Abstract

In this study, using Hydrothermal method, electrodes were synthesized to be used as supercapacitors.
Using the alteration ratio of Al+3/Co+2/Ni+2 metal ions, Al0.5Co0.5Ni2O4 electrode with a molar ratio of 1:1:2 for Al+3/Co+2/Ni+2 ions, the highest capacitance was obtained, which was called the NiCoAl electrode. With the change of time (2, 5 and 20 hours) and the temperature of the hydrothermal process (150 and 180 °C), the performance of the manufactured electrodes changed, and as a result, the NiCoAl electrode synthesized at 150 °C for a period of 5 h, the capacity of 1473 F g-1 in the current density of 8 A g-1 was obtained as the best electrode made. By adding graphene to the electrode's constituent materials, the NiCoAl-rGO electrode, synthesized at 150 °C showed a maximum capacity of 2364 F g-1 at a current density equal to 8 A g-1. With the help of structural analysis of X-ray diffraction test (XRD) and infrared spectrum (FTIR), the presence of constituent materials in the structure was confirmed, and the presence of graphene in the NiCoAl-rGO electrode structure was observed. In order to determine how electrochemical performance works, the electrodes were subjected to cycles (CV), Galvanostatic charge and discharge (CD), and electrochemical impedance (EIS) tests.

Keywords


 [1]       م. چ. د. میرزایی، “رسوب نشانی اسپینل کبالتیت نیکل روی فوم نیکل به روش الکتروشیمیایی جریان ثابت و کاربرد ابرخازنی آن، ”مجله مواد نوین vol. 9, no. 3, pp. 39–48..
[2]        B.E.ConwayV.Birss J.Wojtowicz, “The role and utilization of pseudocapacitance for energy storage by supercapacitors,” J. Power Sources Vol. 66, Issues 1–2, May–June 1997, Pages 1-14, vol. 66, no. 1–2, pp. 1–14.
[3]   B. D. Patrice Simon, Yury Gogotsi, “Where Do Batteries End and Supercapacitors Begin?,” Sci. Vol 343, Issue 6176 14 March 2014, vol. 343, no. 6176, pp. 1210–1211, 2014.
[4]   X. Li and B. Wei, “Supercapacitors based on nanostructured carbon,” Nano Energy, vol. 2, no. 2, pp. 159–173, 2013.
[5]   D. A. A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse, “Carbonbased composite materials for supercapacitor electrodes: a review,” J. Mater. Chem. A, vol. 5, pp. 12653–12672, 2017.
 
 
 
 
 
[6]   A. Q. Lu, J. Chen, J. Xiao, “Nanostructured electrodes for high-performance pseudocapacitors 52 (2013) 1882e1889.,” Chem. Int. Ed., vol. 52, pp. 1882–1889, 2013.
[7]   L. JiříLibich, JosefMáca, JiříVondrák, OndřejČech, MarieSed, “Supercapacitors: Properties and applications,” J. Energy Storage Vol. 17, June 2018, Pages 224-227, vol. 17, pp. 224–227, 2018.
[8]   S. Chen, J. Zhu, X. Wu, Q. Han, and X. Wang, “Graphene Oxide ؊ MnO 2,” vol. 4, no. 5, 2013.
[9]   M. A. Gaikwad, M. P. Suryawanshi, S. S. Nikam, C. H. Bhosale, J. H. Kim, and A. V. Moholkar, “Influence of Zn concentration and dye adsorption time on the photovoltaic perfor- mance of M-SILAR deposited ZnO-based dye sensitized solar cells,” J. Photochem. Photobiol. A Chem., vol. 329, pp. 246–254, 2016.
[10]      Z. Yang, J. Tian, Z. Yin, C. Cui, W. Qian, and F. Wei, “Carbon nanotube- and graphene- based nanomaterials and applications in high-voltage supercapacitor: a review,” AC SC, 2018.
[11]      Lokhande, C. D, Dubal, D. P, and O. Joo, “Metal oxide thin fi lm based supercapacitors,” Curr. Appl. Phys., vol. 11, no. 3, pp. 255–270, 2011.
[12]      X. Wang, H. Li, H. Li, S. Lin, J. Bai, and J. Dai, “Heterostructures of Ni – Co – Al layered double hydroxide assembled on V 4 C 3 MXene for high- energy hybrid supercapacitors †,” no. Cv, pp. 24–29, 2019.
[13]      X. Gao et al., “Significant Role of Al in Ternary Layered Double Hydroxides for Enhancing Electrochemical Performance of Flexible Asymmetric Supercapacitor,” vol. 1903879, pp. 1–12, 2019.
[14]      Liu, Xiaoying, Zhang, and Yuxin, “Crystal morphology evolution of Ni–Co layered double hydroxide nanostructure towards high-performance biotemplate asymmetric supercapacitors,” vol. 20, no. 46, 2018.
[15]      N. Yulian, L. Ruiyi, L. Zaijun, F. Yinjun, and L. Junkang, “Electrochimica Acta High-performance supercapacitors materials prepared via in situ growth of NiAl-layered double hydroxide nanoflakes on well-activated graphene nanosheets,” Electrochim. Acta, vol. 94, pp. 360–366, 2013.
[16]      H. Lee, “Facile synthesis of porous CoAl-layered double hydroxide/graphene composite with enhanced capacitive performance for supercapacitors,” Elsevier Ltd, 2015.
[17]      M. Du, X. S. Yin, C. H. Tang, T. J. Huang, and H. Gong, “X,” Electrochem. acta, vol. 190, no. 521, 2016.
[18]      Y. H. Xiao et al., “x,” Elechtrochemical Acta, 2017.
[19]      Z. Yan, Q. Dang, Y. Lu, and Z. H. Liu, “x,” colloids Surf. A, vol. 520, no. 32, 2017.
[20]      Y. Wang et al., “x,” J. Power Sources, vol. 327, pp. 221–228, 2016.
[21]      M. T. and M. M. H. Maki, “X,” ACS Appl. Mater. Interfaces, vol. 7, pp. 17188–17198, 2015.
[22]      Y. M. Byrappa, K., HANDBOOK OF HYDROTHERMAL TECHNOLOGY A Technology for Crystal Growth. 2001.
[23]      H. Sun, L. Lin, Y. Huang, and W. Hong, “Nickel Precursor-free Synthesis of Nickel Cobalt-based Ternary Metal Oxides for Asymmetric Supercapacitor,” Electrochim. Acta, 2018.
[24]      X. G. Z. J.M. Luo, B. Gao, “X,” Mater. Res. Bull., vol. 43, p. 1119, 2008.
[25]      L. Mai, Yang, F. Zhao, Y. Xu, X. Xu, and L. Luo, “X,” Y. Nat. Commun, vol. 2, p. 381, 2011.
[26]      R. Raccichini, A. Varzi, S. Passerini, and  and B. Scrosati, “The role of graphene for electrochemical energy storage,” vol. 14, no. March, pp. 271–279, 2015.
[27]      Theiss, F. L, Ayoko, G. A, Frost, and R. L, “Applied Surface Science Synthesis of layered double hydroxides containing Mg 2 + , Zn 2 + , Ca 2 + and Al 3 + layer cations by co-precipitation methods — A review,” Appl. Surf. Sci., vol. 383, pp. 200–213, 2016.
[28]      G. S. Gund, D. P. Dubal, S. B. Jambure, and S. Shinde, “Ni ( OH ) 2 thin fi lms and its subsequent e ff ect on,” pp. 4793–4803, 2013.
[29]      J. Xue, W. Ren, M. Wang, and H. Cui, “Synthesis of nanofiber-composed dandelion-like CoNiAl triple hydroxide as an electrode material for high-performance supercapacitor,” J. Nanoparticle Res., vol. 16, no. 12, 2014.
[30]      X. Liu, Y. Zhang, X. Zhang, and S. Fu, “Studies on Me / Al-layered double hydroxides ( Me = Ni and Co ) as electrode materials for electrochemical capacitors,” vol. 49, pp. 3137–3141, 2004.
[31]      P. Wang, “Nanohybrids from NiCoAl-LDH coupled with carbon for pseudocapacitors: understanding the role of nano-structured carbon,” Nanoscale, vol. 6, no. 6, 2014.
[32]      Boruah, Misra, Buddha, and D. Abha, “Flexible Ternary Oxide based Solid-State Supercapacitor with Excellent Rate Capability,” J. Mater. Chem. A, vol. 113, pp. 62–71, 2016.
[33]      C. Zheng, T. Yao, T. Xu, H. Wang, and P. Huang, “Growth of ultrathin Ni e Co e Al layered double hydroxide on reduced graphene oxide and superb supercapacitive performance of the resulting composite,” J. Alloys Compd., vol. 678, pp. 93–101, 2016.
[34]      B. Bhujun, M. T. T. Tan, and A. S. Shanmugam, “Results in Physics Study of mixed ternary transition metal ferrites as potential electrodes for supercapacitor applications,” Results Phys., vol. 7, pp. 345–353, 2017.
[35]      H. KuanXin, Z. Xiaogang, and L. Juan, “X,” Electrochim. Acta, vol. 51, p. 1289, 2006.
[36]      Z. Hu, Y. Xie, Y. Wang, H. Wu, Y. Yang, and Z. Zhang, “Electrochimica Acta Synthesis and electrochemical characterization of mesoporous Co x Ni 1 − x layered double hydroxides as electrode materials for supercapacitors,” vol. 54, pp. 2737–2741, 2009.
[37]      . Deng et al., “Temperature effect on the synthesis of two Ni-MOFs with distinct performance in supercapacitor,” J. Solid State Chem., p. 121026, 2019.
[38]      Z. Yang, J. Tian, Z. Yin, C. Cui, W. Qian, and F. Wei, “Carbon nanotube- and graphene- based nanomaterials and applications in high-voltage supercapacitor: a review,” Carbon N. Y., 2018.
[39]      X. Ma et al., “all dry microfabrication of three-dimensional Co3O4/Pt nanonetworks for high-performance microsupercapacitors, Nanoscale 9 (2017) 11765–11772,.”
[40]      A. Roy, A. Ray, S. Saha, and S. Das, “A. Roy, A. Ray, S. Saha, S. Das, Investigation on energy storage and conversion properties of multifunctional PANI-MWCNT composite, Int. J. Hydrogen Energy. 43 (2018) 7128–7139,” 2018.
[41]      H. Dong, M. Chen, S. Rahman, H. S. Parekh, H. M. Cooper, and Z. P. Xu, “H. Dong, M. Chen, S. Rahman, H.S. Parekh, H.M. Cooper, Z.P. Xu, Engineeringsmall MgAl-layered double hydroxide nanoparticles for enhanced genedelivery, Appl. Clay Sci. 100 (2014) 66–75.,” 2014.
[42]      Y. Xiao et al., “Ultrahigh energy density and stable supercapacitor with 2D NiCoAl Layered double hydroxide,” Electrochim. Acta, vol. 253, pp. 324–332, 2017.
[43]      J. Qiu, “Facile fabrication of MWCNT-doped NiCoAl-layered double hydroxide nanosheets with enhanced electrochemical performances,” Mater. Chem. A, vol. 1, no. 6, 2011.