Application of Graphene Oxide Quantum Dots in Planar Perovskite Solar Cell

Document Type : Research Paper

Authors

1 Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.

2 Instituto de Ciencia Molecular, University of Valencia, 46980 Paterna, Spain.

Abstract

Abstract
Introduction: Carbon is cheap and abundant in nature which can significantly reduce the cost of solar cell fabrication. In recent years, carbon nanostructures have gained special attention for application in perovskite solar cells.
Methods: In this research, graphene oxide quantum dots (GOQDs) have been used in a planar perovskite solar cell. For this purpose, GOQDs with sizes smaller than 10 nm were synthesized by the hydrothermal method. The GOQDs were spin coated on ITO to make a planar n-i-p perovskite solar cell with the structure ITO/GOQD/MAPbI3/Spiro-OMETAD/Ag.
Findings: The absorption spectrum of the GOQDs shows no overlap with absorption band of the MAPbI3 perovskite layer. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis show that a uniform film of crystalline MAPbI3 perovskite has been formed on the GOQD layer. The best device performance achieved in this research for the planar perovskite solar cell is as follows: Jsc=21.9 mA/cm2, Voc=1.02 V, FF=0.67 and PCE=15%.
 

Keywords


Tai Q, Cao J, Wang T, Yan F. Recent advances toward efficient and stable tin‐based perovskite solar cells. EcoMat. 2019;1(1):1–15. [doi:10.1002/eom2.12004]

2.    Kim G, Min H, Lee KS, Lee DY, Yoon SM, Seok S Il. Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science. 2020;370(6512):108–12. [doi:10.1126/science.abc4417]

3.    Jeong J, Kim M, Seo J, Lu H, Ahlawat P, Mishra A, et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature. 2021;592(7854):381–5. [doi:s41586-021-03406-5]

4.    Liu D, Kelly TL. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat Photonics. 2013;8(2):133–8. [doi:10.1038/nphoton.2013.342]

5.    Zhu Z, Xue Q, He H, Jiang K, Hu Z, Bai Y, et al. A PCBM Electron Transport Layer Containing Small Amounts of Dual Polymer Additives that Enables Enhanced Perovskite Solar Cell Performance. Adv Sci. 2016;3(9):1500353. [doi:10.1002/advs.201500353]

6.    Lakhdar N, Hima A. Electron transport material effect on performance of perovskite solar cells based on CH3NH3GeI3. Opt Mater. 2020;99:109517. [doi:S0925346719307372]

7.    Zhou Y, Yang S, Yin X, Han J, Tai M, Zhao X, et al. Enhancing electron transport via graphene quantum dot/SnO2 composites for efficient and durable flexible perovskite photovoltaics. J Mater Chem A. 2019;7(4):1878–88. [doi:C8TA10168J]

8.    Weber CD, Bradley C, Lonergan MC. Solution phase n-doping of C60 and PCBM using tetrabutylammonium fluoride. J Mater Chem A. 2014;2(2):303–7. [doi:c3ta14132b]

9.    Yang Z, Xie J, Arivazhagan V, Xiao K, Qiang Y, Huang K, et al. Efficient and highly light stable planar perovskite solar cells with graphene quantum dots doped PCBM electron transport layer. Nano Energy. 2017;40:345–51. [doi:10.1016/j.nanoen.2017.08.008]

10. Sabetghadam SA, Hosseini Z, Zarei S, Ghanbari T. Improvement of the current generation in silicon solar cells by utilizing graphene quantum dot as spectral converter. Mater Lett. 2020;279:128515. [doi:10.1016/j.matlet.2020.128515]

11. Zarei S, Hosseini Z, Sabetghadam SA, Ghanbari T. Improved sensitivity in self-powered photoelectrochemical UV photodetector by application of graphene quantum dots. Eur Phys J Plus. 2021;136(5):515. [doi:10.1140/epjp/s13360-021-01529-2]

12. Paulo S, Palomares E, Martinez-Ferrero E. Graphene and Carbon Quantum Dot-Based Materials in Photovoltaic Devices: From Synthesis to Applications. Nanomaterials. 2016;6(9):157. [doi:2079-4991/6/9/157]

13. Gupta V, Chaudhary N, Srivastava R, Sharma GD, Bhardwaj R, Chand S. Luminscent graphene quantum dots for organic photovoltaic devices. J Am Chem Soc. 2011;133(26):9960–3. [PMID:21650464]

14. Bak S, Kim D, Lee H. Graphene quantum dots and their possible energy applications: A review. Curr Appl Phys. 2016;16(9):1192–201. [doi:10.1016/j.cap.2016.03.026]

15. Zhu Z, Ma J, Wang Z, Mu C, Fan Z, Du L, et al. Efficiency Enhancement of Perovskite Solar Cells through Fast Electron Extraction: The Role of Graphene Quantum Dots. J Am Chem Soc. 2014 Mar 12;136(10):3760–3. [doi:10.1021/ja4132246]

16. Xie J, Huang K, Yu X, Yang Z, Xiao K, Qiang Y, et al. Enhanced Electronic Properties of SnO2 via Electron Transfer from Graphene Quantum Dots for Efficient Perovskite Solar Cells. ACS Nano. 2017;11(9):9176–82. [doi:10.1021/acsnano.7b04070]

17. Pang S, Zhang C, Zhang H, Dong H, Chen D, Zhu W, et al. Boosting performance of perovskite solar cells with Graphene quantum dots decorated SnO2 electron transport layers. Appl Surf Sci. 2020;507:145099. [doi: 10.1016/j.apsusc.2019.145099]

18. Biccari F, Gabelloni F, Burzi E, Gurioli M, Pescetelli S, Agresti A, et al. Graphene-Based Electron Transport Layers in Perovskite Solar Cells: A Step-Up for an Efficient Carrier Collection. Adv Energy Mater. 2017;7(22):1701349. [doi:10.1002/aenm.201701349]

19. Ebrahimi M, Kermanpur A, Atapour M, Adhami S, Heidari RH, Khorshidi E, et al. Performance enhancement of mesoscopic perovskite solar cells with GQDs-doped TiO2 electron transport layer. Sol Energy Mater Sol Cells. 2020;208:110407. [doi:10.1016/j.solmat.2020.110407]

20. Icli KC, Ozenbas M. Fully metal oxide charge selective layers for n-i-p perovskite solar cells employing nickel oxide nanoparticles. Electrochim Acta. 2018;263:338–45. [doi:10.1016/j.electacta.2018.01.073]

21. Gonzalez-Pedro V, Juarez-Perez E, Arsyad W, Barea E, Fabregat-Santiago F, Mora-Sero I, et al. General Working Principles of CH3NH3PbX3 Perovskite Solar Cells. Nano Letters. 2014;14(2):888–93. [doi: 10.1021/nl404252e]

22. Fathizadeh M, Tien H. N, Khivantsev K, Song Z, Zhou F, Yu M. Polyamide/nitrogen-doped graphene oxide quantum dots (N-GOQD) thin film nanocomposite reverse osmosis membranes for high flux desalination. Desalination. 2019;451:125–32. [doi:10.1016/j.desal.2017.07.014]