Investigating the role of electrode material and CTAB protective concentration in the synthesis of copper nanoparticles by electrochemical method

Document Type : Review paper

Authors

Department of Materials Engineering, Islamic Azad University, Saveh branch, Saveh, Iran.

Abstract

Abstract
Introduction: Nano copper powder is prepared by various methods, which can be mentioned as chemical regeneration, evaporation-deposition, plasma, chemical mechanical, electric explosion, electrolytic deposition and liquid metal atomization methods. Among these, the electrolytic method is more ideal due to the simplicity of the process, low energy consumption, high efficiency, easy control, and low environmental pollution. In this research, the role of electrode material and protective concentration in the electrochemical synthesis of copper nanoparticles was investigated.
Methods: constant current density and temperature equal to 0.04 A/cm2 and 50 C° and the distance between cathode and anode 2.5 cm were considered as research constants. Research variables included copper, gold, steel and rubidium cathode electrodes as well as CTAB protective concentration
Findings: . The results showed that smaller crystals can be obtained with copper and gold cathodes. XRD analysis showed that the best purity of copper nanoparticles is obtained by copper cathode. SEM results showed that the gold cathode leads to the formation of spherical and non-cubic particles; and the copper cathode caused the formation of cubic particles. By increasing the amount of CTAB, the purity of copper increased and the growth of copper nanoparticles was effectively prevented. The crystallinity index is more than one and the copper metal is polycrystalline.

Keywords


[1] M.B. Gawande, A. Goswami, F.X. Felpin, , T. Asefa, X. Huang, R. Silva, R.S. Varma, Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chemical reviews, 116(2016), 3722-3811.

[2] S.H. Wu, D.H. Chen, Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions. Journal of colloid and interface science, 273(2004), 165-169.

[3] H. Hashemipour, M.E. Zadeh, R. Pourakbari, P. Rahimi, Investigation on synthesis and size control of copper nanoparticle via electrochemical and chemical reduction method. International Journal of Physical Sciences, 6(2011), 4331-4336.

[4] J. Wang , X. Zhao , F. Tang, Y. Li , Y. Yan , L. Li, Synthesis of copper nanoparticles with controllable crystallinity and their photothermal property, Colloids and Surfaces A: Physicochemical and Engineering Aspects 626 (2021) 126970.

[5] ف. ابراهیم زاده، "سنتز و شناسایی نانو ذرات مس پایدار از لحاظ شیمیایی در محیط‌های آبی با کنترل شکل و اندازه ذرات‌ با روش احیاء شیمیایی درحضور مالئیک اسید و پلی وینیل پیرولیدون"، فصلنامه علمی-پژوهشی مواد نوین، 1396، 8(29): 121-128.

[6] F. Parveen, S. Basavaraja, V.M. Mandke, H. M. Pathan, Copper nanoparticles: Synthesis methods and its light harvesting performance, Solar Energy Materials and Solar Cells 144 (2016): 371-382.

[7] G. Rajagopal, A. Nivetha, M. Sundar, T. Panneerselvam, S. Murugesan, P. Parasuraman, S. Kumar, S Ilango, S. Kunjiappan, Mixed phytochemicals mediated synthesis of copper nanoparticles for anticancer and larvicidal applications, Heliyon 7 (2021) e07360

[8] S. A. Akintelu, A. S. Folorunso, F. Adekunle. Folorunso, A. K. Oyebamiji. Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation. Heliyon 6 (2020) -04508.

[9] E. A. Mohamed, Green synthesis of copper and copper oxide nanoparticles using the extract of seedless dates, Heliyon 6 (2020) -03123.

[10] M.I. Din, R. Rehan, Synthesis, characterization, and applications of copper nanoparticles, Anal. Lett. 50 (2017) 50–62.

[11] I. Prabha, A. Nivetha, C. Sakthivel, Effective/comparative investigation on green mediated nano copper oxide: fabrication, characterization and environmental applications. Materials Today: Proceedings 51 (2022): 1690-1695.

[12] M. Benguigui, I.S. Weitz, M. Timaner, T. Kan, D. Shechter, O. Perlman, et al., Copper oxide nanoparticles inhibit pancreatic tumor growth primarily by targeting tumor initiating cells, Scientific Reports 9, 1 (2019),1-10.

[13]  د. یارعلی، ر. احمدی، ر. حسینی، "سنتز نانو ذرات اکسید فلزی مس - قلع به روش انفجار الکتریکی سیم و بررسی خواص ضد باکتری آن"، فصلنامه علمی - پژوهشی مواد نوین، 1397، 8(32)، 136-125.

[14] R. Katwal, H. Kaur, G. Sharma, M. Naushad, D. Pathania, Electrochemical synthesized copper oxide nanoparticles for enhanced photocatalytic and antimicrobial activity, Journal of Industrial and Engineering Chemistry 31 (2015): 173-184.

[15] A. B. Isaev, N. A. Zakargaeva, and Z. M. Aliev, Electrochemical Synthesis of Cu2O Nanoparticles at High Pressure and Investigation of Their Photocatalytic Activity, Nanotechnologies in Russia, 6 (2011) 463–467.

[16] T. Theivasanthi and M. Alagar, Nano sized copper particles by electrolytic synthesis and characterizations, International Journal of the Physical Sciences 6(2011). 3662-3671.

[17] X. Pan, I. Medina-Ramirez, R. Mernaugh, J. Liu, Nanocharacterization and bactericidal performance of silver modified titania photocatalyst, Colloids and Surfaces: B Biointerfaces 77 (2010) 82–89.

[18] E. Alzahrani, R. A. Ahmed, Synthesis of Copper Nanoparticles with Various Sizes and Shapes: Application as a Superior Non-Enzymatic Sensor and Antibacterial Agent, International Journal of Electrochemical Science 11, 6 (2016): 4712-4723.

[19] I. Haas, A. Gedanken, Sonoelectrochemistry of Cu2+ in the Presence of Cetyltrimethylammonium Bromide: Obtaining CuBr Instead of Copper, Chemistry of materials 18, no. 5 (2006): 1184-1189.

[20] D. Mott, J. Galkowski, L. Wang, J. Luo, and C.-J. Zhong, Synthesis of Size-Controlled and Shaped Copper Nanoparticles, Langmuir 23 (2007) 5740-5745.