Effect of multi-pass friction stir processing on microstructure and mechanical properties of cast A216 alloy

Document Type : Research Paper

Authors

1 Department of Materials Engineering, Islamic Azad University, Saveh branch, Saveh, Iran.

2 Arak Godazesh Company, Arak, Iran.

Abstract

One of the main problems in oil and gas pipelines is abrasion corrosion on the edges of the flow channel in the plug and ball valves. Under normal conditions, the gas is moving at a pressure of about 145 bar and an approximate speed of 70 feet per second; The suspended particles in the gas collide with the edges of the flow channel and cause severe erosion on them. Abrasion resistance of steels depends mainly on their surface properties and can be increased by increasing the surface hardness by friction stir processing (FSP). In this study, A216-WCB steel, which is used in the manufacturing of casting parts for valves, flanges and fittings, was processed using a friction stir process for one and three passes. The microstructure, hardness and wear properties of the processed area were investigated. The results showed that two distinct zones, the stir zone (SZ) and the thermo-mechanical affected zone (TMAZ), are formed in the processed zone. Due to the friction stir process, the ferrite grain size in the stirring region decreased from 25 microns to about 3 microns. The hardness of the stir zone increased from 165 Vickers to about 780 HV. Also, the abrasion resistance of the stirring area increased up to 2.5 times.

Keywords


  1. Oka, Y. I., Okamura, K., & Yoshida, T. (2005). Practical estimation of erosion damage caused by solid particle impact: Part 1: Effects of impact parameters on a predictive equation. Wear, 259(1-6), 95-101.
  2. Neville, A., & Wang, C. (2009). Erosion–corrosion of engineering steels—Can it be managed by use of chemicals?. Wear, 267(11), 2018-2026.
  3. Zhao, W., Zhang, T., Wang, Y., Qiao, J., & Wang, Z. (2018). Corrosion failure mechanism of associated gas transmission pipeline. Materials, 11(10), 1935.
  4. Sekban, D. M., Aktarer, S. M., Xue, P., Ma, Z. Y., & Purcek, G. (2016). Impact toughness of friction stir processed low carbon steel used in shipbuilding. Materials Science and Engineering: A, 672, 40-48.
  5. Evgrafov, A. N., & Evgrafov, A. N. (2017). Advances in mechanical engineering. Cham: Springer International Publishing.
  6. آ. بهزادی نژاد، ع. محصل، ح. امیدوار، ن. ستوده، "اصلاح خواص مکانیکی جوش اصطکاکی اغتشاشی آلیاژ منیزیم AM60 از طریق تغییر سرعت دوران و افزودن نانو ذرات آلومینا"، فصلنامه علمی - پژوهشی مواد نوین،12، 45،(1400)47-64.
  7. Mishra, R. S., & Ma, Z. Y. (2005). Friction stir welding and processing. Materials science and engineering: R: reports, 50(1-2), 1-78.
  8. Lienert, T. J., Stellwag Jr, W. L., Grimmett, B. B., & Warke, R. W. (2003). Friction stir welding studies on mild steel. Welding Journal-New York-, 82(1), 1-S.
  9. Nandan, R. G. G. R., Roy, G. G., Lienert, T. J., & Debroy, T. (2007). Three-dimensional heat and material flow during friction stir welding of mild steel. Acta materialia, 55(3), 883-895.
  10. Ueji, R., Fujii, H., Cui, L., Nishioka, A., Kunishige, K., & Nogi, K. (2006). Friction stir welding of ultrafine grained plain low-carbon steel formed by the martensite process. Materials Science and Engineering: A, 423(1-2), 324-330.
  11. Cui, L., Fujii, H., Tsuji, N., Nakata, K., Nogi, K., Ikeda, R., & Matsushita, M. (2007). Transformation in stir zone of friction stir welded carbon steels with different carbon contents. ISIJ international, 47(2), 299-306.
  12. Choi, D. H., C. Y. Lee, B. W. Ahn, J. H. Choi, Y. M. Yeon, K. Song, H. S. Park, Y. J. Kim, Choong Don Yoo, and S. B. Jung. "Frictional wear evaluation of WC–Co alloy tool in friction stir spot welding of low carbon steel plates." International Journal of Refractory Metals and Hard Materials 27, no. 6 (2009): 931-936.
  13. Escobar, J. D., Velásquez, E., Santos, T. F. A., Ramirez, A. J., & López, D. (2013). Improvement of cavitation erosion resistance of a duplex stainless steel through friction stir processing (FSP). Wear, 297(1-2), 998-1005.
  14. Grewal, H. S., Arora, H. S., Singh, H., & Agrawal, A. (2013). Surface modification of hydroturbine steel using friction stir processing. Applied Surface Science, 268, 547-555.
  15. Aldajah, S. H., Ajayi, O. O., Fenske, G. R., & David, S. (2009). Effect of friction stir processing on the tribological performance of high carbon steel. Wear, 267(1-4), 350-355.
  16. Chen, Y. C., and K. Nakata. "Evaluation of microstructure and mechanical properties in friction stir processed SKD61 tool steel." Materials characterization 60, no. 12 (2009): 1471-1475.
  17. Chabok, A., & Dehghani, K. (2013). Effect of processing parameters on the mechanical properties of interstitial free steel subjected to friction stir processing. Journal of materials engineering and performance, 22(5), 1324-1330.
  18. Mehranfar, M., & Dehghani, K. (2011). Producing nanostructured super-austenitic steels by friction stir processing. Materials Science and Engineering: A, 528(9), 3404-3408.
  19. Dodds, S., Jones, A. H., & Cater, S. (2013). Tribological enhancement of AISI 420 martensitic stainless steel through friction-stir processing. Wear, 302(1-2), 863-877.
  20. Singh, S., Kaur, M., & Saravanan, I. (2020). Enhanced microstructure and mechanical properties of boiler steel via Friction Stir Processing. Materials Today: Proceedings, 22, 482-486.
  21. Singh, S., Kaur, M., & Kumar, M. (2020). A Novel Technique for Surface Modification of SA 210 Gr A1 Steel. Materials Today: Proceedings, 21, 1930-1936.
  22. Sekban, D. M., Aktarer, S. M., Yanar, H. A. R. U. N., Alsaran, A., & Purcek, G. (2017, February). Improvement the wear behavior of low carbon steels by friction stir processing. In IOP Conference Series: Materials Science and Engineering (Vol. 174, No. 1, p. 012058). IOP Publishing.
  23. Xue, P., Xiao, B. L., Wang, W. G., Zhang, Q., Wang, D., Wang, Q. Z., & Ma, Z. Y. (2013). Achieving ultrafine dual-phase structure with superior mechanical property in friction stir processed plain low carbon steel. Materials Science and Engineering: A, 575, 30-34.
  24. Sekban, D. M., Aktarer, S. M., & Purcek, G. (2019). Friction stir welding of low-carbon shipbuilding steel plates: microstructure, mechanical properties, and corrosion behavior. Metallurgical and Materials Transactions A, 50(9), 4127-4140.
  25. Mishra, R. S., Ma, Z. Y., & Charit, I. (2003). Friction stir processing: a novel technique for fabrication of surface composite. Materials Science and Engineering: A, 341(1-2), 307-310.
  26. Wang, Z. W., Ma, G. N., Yu, B. H., Xue, P., Xie, G. M., Zhang, H., ... & Ma, Z. Y. (2020). Improving mechanical properties of friction-stir-spot-welded advanced ultra-high-strength steel with additional water cooling. Science and Technology of Welding and Joining, 25(4), 336-344.
  27. Costa, M. I., Verdera, D., Vieira, M. T., & Rodrigues, D. M. (2014). Surface enhancement of cold work tool steels by friction stir processing with a pinless tool. Applied surface science, 296, 214-220.
  28. Lorenzo-Martin, C., & Ajayi, O. O. (2015). Rapid surface hardening and enhanced tribological performance of 4140 steel by friction stir processing. Wear, 332, 962-970.
  29. Xue, P., Li, W. D., Wang, D., Wang, W. G., Xiao, B. L., & Ma, Z. Y. (2016). Enhanced mechanical properties of medium carbon steel casting via friction stir processing and subsequent annealing. Materials Science and Engineering: A, 670, 153-158.

Hajian, M., Abdollah-Zadeh, A., Rezaei-Nejad, S. S., Assadi, H., Hadavi, S. M. M., Chung, K., & Shokouhimehr, M. (2015). Microstructure and mechanical properties of friction stir processed AISI 316L stainless steel. Materials & Design, 67, 82-94.