Investigation of the structure and mechanical properties of aluminum 6061-graphene nanocomposite fabricated by the friction stir processing

Document Type : Research Paper

Authors

1 Department of Engineering, Saveh Branch, Islamic Azad University, Saveh, Iran.

2 Payame Noor Unvierstiy

Abstract

Abstract
Introduction: In this research, the structure and mechanical properties of aluminum 6061 composite with graphene reinforcing nanoparticles produced by friction stir method (FSP) were investigated. The rotation speed of the tool was set from 112 to 280 rpm, the speed of the tool movement in the range of 31.5 to 20 mm/min and the slope of the conical tool was set at 2, 2.5 and 3 degrees.
Methods: Characterization was done by tensile tests, microhardness, field emission scanning electron microscope (FESEM) along with X-ray energy spectroscopy (EDS) and optical microscope (OM). The results show that in the presence of graphene as a reinforcement, the mechanical properties are improved.
Findings: By increasing the ratio of rotation speed to tool movement speed (advance per revolution) from 0.07 to 0.28 and increasing the tool angle from 2 to 3 degrees, tensile strength enhanced from 338 to 396 MPa, yield strength from 319 to 383 MPa and the elongation increase has increased from 10.9 to 12.3 percent. Also, the micro-hardness in the nugget area increased from 273 to 400 Vickers.

Keywords


1.                   Dhayalan, R., K. Kalaiselvan, and R. Sathiskumar. "Characterization of AA6063/SiC-Gr surface composites produced by FSP technique." Procedia Engineering 97 (2014): 625-631. http://dx.doi.org/10.1016/j.proeng.2014.12.291

2.                    Jeon, Chi-Hoon, Yong-Ha Jeong, Jeong-Jin Seo, Huynh Ngoc Tien, Sung-Tae Hong, Young-Jin Yum, Seung-Hyun Hur, and Kwang-Jin Lee. "Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing." International journal of precision engineering and manufacturing 15, no. 6 (2014): 1235-1239. http://dx.doi.org/10.1007/s12541-014-0462-2.

3.                    Murali, V. V., G. Krishna, and K. Satyanarayana. "Microstructure and mechanical properties of multipass friction stir processed aluminum silicon carbide metal matrix." International Journal of Scientific Engineering and Technology 4, no. 2 (2015): 88-90.
https://www.indianjournals.com/ijor.aspx?target=ijor:ijset1&volume=4&issue=2&article=012

4.                    Sharma, Abhishek, Vyas Mani Sharma, and Jinu Paul. "Fabrication of bulk aluminum-graphene nanocomposite through friction stir alloying." Journal of Composite Materials 54, no. 1 (2020): 45-60.  https://doi.org/10.1177/0021998319859427

5.                   Bartolucci, Stephen F., Joseph Paras, Mohammad A. Rafiee, Javad Rafiee, Sabrina Lee, Deepak Kapoor, and Nikhil Koratkar. "Graphene–aluminum nanocomposites." Materials Science and Engineering: A 528, no. 27 (2011): 7933-7937. http://dx.doi.org/10.1016/j.msea.2011.07.043

6.                    Daneshmand, S. H., Zakeri, M. Shojaee, T., Mohammaadbeygi, A.and Nazari, A.. "The effect of graphene percent on mechanical properties of Cu/graphene nanocomposites." (2014): 37-43. https://doi.org/10.30501/jamt.2635.70250

7.                    Ovid'Ko, I. A. "Metal-graphene nanocomposites with enhanced mechanical properties: a review." Reviews on Advanced Materials Science 38, no. 2 (2014). https://www.ipme.ru/e-journals/RAMS/no_23814/09_23814_ovidko.pdf

8.                    Muley, Aniruddha V., S. Aravindan, and I. P. Singh. "Nano and hybrid aluminum based metal matrix composites: an overview." Manufacturing Review 2 (2015): 15. http://dx.doi.org/10.1051/mfreview/2015018

9.                   Kumar, HG Prashantha, and M. Anthony Xavior. "Graphene reinforced metal matrix composite (GRMMC): a review." Procedia Engineering 97 (2014): 1033-1040. http://dx.doi.org/10.1016/j.proeng.2014.12.381

10.                Aswin, S., and S. Varghese. "Tribology study of graphene-aluminium nanocomposites." Int. J. Mech. Prod. Eng.(IJMPE) 2 (2014): 29-33. https://www.iraj.in/journal/journal_file/journal_pdf/2-100-141760527529-33.pdf

11.                Yan, Shao-jiu, Cheng Yang, Qi-hu Hong, Jun-zhou Chen, Da-bo Liu, and Sheng-long Dai. "Research of graphene-reinforced aluminum matrix nanocomposites." Journal of Materials Engineering 1, no. 4 (2011): 1-6. https://www.ingentaconnect.com/content/jme/jme/2014/00000001/00000004/art00001?crawler=true

12.                Maurya, Rita, Binit Kumar, S. Ariharan, J. Ramkumar, and Kantesh Balani. "Effect of carbonaceous reinforcements on the mechanical and tribological properties of friction stir processed Al6061 alloy." Materials & Design 98 (2016): 155-166. https://doi.org/10.1016/j.matdes.2016.03.021

13.               نظری مهدی، اسکندری حسین و گلبهارحقیقی محمدرضا. "ساخت و بررسی خواص مکانیکی کامپوزیت آلومینیوم 6061-دی‌بوراید تیتانیم-گرافن تولیدشده با فرآیند اصطکاکی-اغتشاشی." مهندسی مکانیک مدرس 20، 3 (1398): 611-621. http://mme.modares.ac.ir/article-15-29876-fa.html

14.               Moustafa, Essam B., A. Melaibari, Ghazi Alsoruji, Asmaa M. Khalil, and Ahmed O. Mosleh. "Al 5251-based hybrid nanocomposite by FSP reinforced with graphene nanoplates and boron nitride nanoparticles: Microstructure, wear, and mechanical characterization." Nanotechnology Reviews 10, no. 1 (2021): 1752-1765. https://doi.org/10.1515/ntrev-2021-0108

15.               ربیعی زاده امین، افسری احمد و محمدی مهرداد. "تولید و بررسی خواص نانو کامپوزیت سطحی آلومینیوم/نانولوله کربنی (Al-CNT) تولید شده با فرآیند اصطکاکی-اغتشاشی." فصلنامه علمی-پژوهشی مواد نوین 3، 10 (1391) 13-24.
 ‎
https://jnm.marvdasht.iau.ir/article_1406.html

16.                Zhang, Z. W., Z. Y. Liu, B. L. Xiao, D. R. Ni, and Z. Y. Ma. "High efficiency dispersal and strengthening of graphene reinforced aluminum alloy composites fabricated by powder metallurgy combined with friction stir processing." Carbon 135 (2018): 215-223. https://doi.org/10.1016/j.carbon.2018.04.029

17.                https://www.graphene-info.com/xg-sciences.

18.                Boostani, A. Fadavi, S. Tahamtan, Z. Y. Jiang, Dongbin Wei, Siamak Yazdani, R. Azari Khosroshahi, R. Taherzadeh Mousavian, Jianzhong Xu, X. Zhang, and Dianyao Gong. "Enhanced tensile properties of aluminium matrix composites reinforced with graphene encapsulated SiC nanoparticles." Composites Part A: Applied Science and Manufacturing 68 (2015): 155-163. http://dx.doi.org/10.1016/j.compositesa.2014.10.010

19.                Dinaharan, I. "Influence of ceramic particulate type on microstructure and tensile strength of aluminum matrix composites produced using friction stir processing." Journal of Asian Ceramic Societies 4, no. 2 (2016): 209-218. http://dx.doi.org/10.1016/j.jascer.2016.04.002

20.                Sharma P., Bhati D." Effects of tool rotation speed and tilt angle on friction stir welding of Al- 6075." International Journal on Recent Technologies in Mechanical and Electrical Engineering, 2(8), (2015) 60–62.  https://www.ijrmee.org/index.php/ijrmee/article/view/293

21.               Sharma, Abhishek, Vyas Mani Sharma, Baidehish Sahoo, Surjya Kanta Pal, and Jinu Paul. "Effect of multiple micro channel reinforcement filling strategy on Al6061-graphene nanocomposite fabricated through friction stir processing." Journal of Manufacturing Processes 37 (2019): 53-70. https://doi.org/10.1016/j.jmapro.2018.11.009

22.                Bauri, Ranjit, and Devinder Yadav. Metal matrix composites by friction stir processing. Butterworth-Heinemann, 2017. http://dx.doi.org/10.1016/B978-0-12-813729-1.00002-4

23.               Sahraeinejad, S., H. Izadi, M. Haghshenas, and A. P. Gerlich. "Fabrication of metal matrix composites by friction stir processing with different particles and processing parameters." Materials Science and Engineering: A 626 (2015): 505-513. http://dx.doi.org/10.1016/j.msea.2014.12.077

24.               Pouraliakbar H., Beygi R., Fallah V., Monazzah A.H., Jandaghi M.R., Khalaj G., da Silva L.F., Pavese M., Processing of Al-Cu-Mg alloy by FSSP: Parametric analysis and the effect of cooling environment on microstructure evolution. Materials Letters, 2021, 131157. http://dx.doi.org/10.1016/j.matlet.2021.131157

25.                Rathee, Sandeep, Sachin Maheshwari, Arshad Noor Siddiquee, and Manu Srivastava. "Fabrication of AA 6063/SiC surface composites via friction stir processing." India International Science Festival: Young Scientists’ Meet Department of Science and Technology, Government of India (2015). https://www.researchgate.net/profile/Arshad-Siddiquee/publication/308416018_Fabrication_of_AA_6063SiC_Surface_Composites_via_Friction_Stir_Processing/links/57e3c1bb08ae054b20be1828/Fabrication-of-AA-6063-SiC-Surface-Composites-via-Friction-Stir-Processing.pdf

26.                Kumar, N., I. Monga, and M. Kumar. "An Experimental Investigation to Find Out the Effect of Different Pin Profile Tools on AA 6061 T6 and AA 2014 T4 with Friction Stir Welding." International Journal for Technological Research in Engineering 2 (2015):1622-1625. http://www.ijtre.com/images/scripts/2015020866.pdf

27.                Rana, H. G., V. J. Badheka, and A. Kumar. "Fabrication of Al7075/B4C surface composite by novel friction stir processing (FSP) and investigation on wear properties." Procedia Technology 23 (2016): 519-528. http://dx.doi.org/10.1016/j.protcy.2016.03.058

28.                Zhao, Yong, Xiaolu Huang, Qiming Li, Jian Huang, and Keng Yan. "Effect of friction stir processing with B4C particles on the microstructure and mechanical properties of 6061 aluminum alloy." The international journal of advanced manufacturing technology 78, no. 9 (2015): 1437-1443. http://dx.doi.org/10.1007/s00170-014-6748-9 

29.                M. Nourani, A. Milani and S. Yannacopoulos, "Taguchi Optimization of Process Parameters in Friction Stir Welding of 6061 Aluminum Alloy: A Review and Case Study," Engineering, Vol. 3 No. 2, 2011, pp. 144-155. http://dx.doi.org/10.4236/eng.2011.32017 

30.                Rohilla, Puneet, and Narinder Kumar. "Experimental investigation of tool geometry on mechanical properties of friction stir welding of AA6061." International Journal of Innovative Technology and Exploring Engineering 3, no. 3 (2013): 56-61. https://www.ijitee.org/wp-content/uploads/papers/v3i3/C1091083313.pdf

31.               Dinaharan, I., N. Murugan, and A. Thangarasu. "Development of empirical relationships for prediction of mechanical and wear properties of AA6082 aluminum matrix composites produced using friction stir processing." Engineering science and technology, an international journal 19, no. 3 (2016): 1132-1144. http://dx.doi.org/10.1016/j.jestch.2016.02.004

32.               Patel, Vivek V., Vishvesh J. Badheka, and Abhishek Kumar. "Effect of velocity index on grain size of friction stir processed Al-Zn-Mg-Cu alloy." Procedia Technology 23 (2016): 537-542. http://dx.doi.org/10.1016/j.protcy.2016.03.060