Investigating the effect of CaO/MgO ratio on the structure and final properties of wall tile bodies in rapid firing using Zanjan talc and Abbas Abad calcium carbonate as primary sources

Document Type : Research Paper

Authors

1 Department of Materials Engineering, College of Technology and Engineering, Saveh Branch, Islamic Azad University, Saveh, Iran

2 Department of Materials Science and Engineering, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran

Abstract

Abstract
Introduction: In this research, the simultaneous effect of CaO and MgO as the main oxides that activate the reactions during rapid firing of ceramic tiles on the path of transformations and the formation of the beneficial phase of Anorthite and the reduction of the harmful phase of Gehlenite was studied.
Methods: Calcium carbonate was chosen as a source of CaO oxide and talc powder as a source of MgO. After forming with a press, the mixtures were heat treated and the bodies were sintered. XRD, Dilatometery and SEM/FESEM analysis methods were used to evaluate the mechanism of product formation. The phases of the manufactured bodies were identified by X-ray diffraction test. The weight percentage of constituent phases was calculated through Maud software.
Findings: Investigations showed that with decreasing CaO/MgO ratio, the weight percentage of Anorthite phase increased. Similarly, with the decrease of CaO/MgO ratio, the coefficient of thermal expansion decreased. So that the lowest coefficient of thermal expansion (7.75 x 10-6 units per degree Celsius) was reported. Microstructural investigations showed that by fine-granulating the primary sources of calcium carbonate and talc, the harmful Gehlenite phase was removed from the final microstructure and the Anorthite phase increased (up to 10% by weight). Likewise, the crystals of Anorthite phase have grown more.

Keywords


  1. Biffi, G., & Giovannini, R. (2003). Book for the production of the ceramic tiles. Gruppo editoriale Faenza.
  2. Kingery, W. D., Bowen, H. K., & Uhlmann, D. R. (1976). Introduction to ceramics (Vol. 17). John wiley & sons.
  3. Dondi, M., Raimondo, M., & Zanelli, C. (2014). Clays and bodies for ceramic tiles: Reappraisal and technological classification. Applied Clay Science, 96, 91-109.
  4. Vari , (2007) , Drying And Firing Of Ceramic Tiles, S.A.L.A , Modena , Italy
  5. Furlani, E., & Maschio, S. (2013). Mechanical properties and microstructure of fast fired tiles made with blends of kaolin and olivine powders. Ceramics International, 39(8), 9391-9396.
  6. De Noni Jr, A., Hotza, D., Soler, V. C., & Vilches, E. S. (2010). Influence of composition on mechanical behaviour of porcelain tile. Part I: Microstructural characterization and developed phases after firing. Materials Science and Engineering: A, 527(7-8), 1730-1735.
  7. Kronberg, T., & Hupa, L. (2020). The impact of wollastonite and dolomite on chemical durability of matte fast-fired raw glazes. Journal of the European Ceramic Society, 40(8), 3327-3337.
  8. Torres, F. J., de Sola, E. R., & Alarcón, J. (2006). Mechanism of crystallization of fast fired mullite-based glass–ceramic glazes for floor-tiles. Journal of non-crystalline solids, 352(21-22), 2159-2165.
  9. Alonso-De la Garza, D. A., Guzmán, A. M., Gómez-Rodríguez, C., Martínez, D. I., & Elizondo, N. (2022). Influence of Al2O3 and SiO2 nanoparticles addition on the microstructure and mechano-physical properties of ceramic tiles. Ceramics International.
  10. Torres, F. J., & Alarcón, J. (2005). Pyroxene-based glass-ceramics as glazes for floor tiles. Journal of the European Ceramic Society, 25(4), 349-355.
  11. Ke, S., Cheng, X., Wang, Y., Wang, Q., & Wang, H. (2013). Dolomite, wollastonite and calcite as different CaO sources in anorthite-based porcelain. Ceramics International, 39(5), 4953-4960.
  12. Das, S. K., Dana, K., Singh, N., & Sarkar, R. (2005). Shrinkage and strength behaviour of quartzitic and kaolinitic clays in wall tile compositions. Applied Clay Science, 29(2), 137-143.
  13. Mesbah, H., Wilson, M. A., Carter, M. A., & Shackleton, J. (2010, August). Effect of prolonged sintering time at 1200 C on the phase transformation and reactivity with moisture of fired kaolinite. In 11th International Conference on Ceramic Processing Science, ICCPS-11,(Zurich, Switzerland), The University of Manchester Library.
  14. Wang, S., Li, X., Wang, C., Bai, M., Zhou, X., Zhang, X., & Wang, Y. (2022). Anorthite-based transparent glass-ceramic glaze for ceramic tiles: Preparation and crystallization mechanism. Journal of the European Ceramic Society, 42(3), 1132-1140.
  15. Bozadjiev, L. S., Bozadjiev, R. L., Georgiev, G. T., & Doncheva, L. S. (2006). Diopside porcelain tile. Bull. Am. Ceram. Soc, 85, 12-9101.
  16. Amberg, C. R. (1944). 'Effect of addtions of Diopsideon properties of wall tile body. Journal of the American Ceramic Society, 27(11), 324-326.
  17. Traore, K., Kabre, T. S., & Blanchart, P. (2003). Gehlenite and anorthite crystallisation from kaolinite and calcite mix. Ceramics International, 29(4), 377-383.
  18. Kłosek-Wawrzyn, E., Małolepszy, J., & Murzyn, P. (2013). Sintering behavior of kaolin with calcite. Procedia Engineering, 57, 572-582.
  19. Cultrone, G., Rodriguez-Navarro, C., Sebastian, E., Cazalla, O., & De La Torre, M. J. (2001). Carbonate and silicate phase reactions during ceramic firing. European Journal of Mineralogy, 13(3), 621-634.
  20. González-García, F., Romero-Acosta, V., García-Ramos, G., & González-Rodríguez, M. (1990). Firing transformations of mixtures of clays containing illite, kaolinite and calcium carbonate used by ornamental tile industries. Applied Clay Science, 5(4), 361-375.
  21. احمدی مقدم، هاجر، عبداللهی، مهدی. (1398). بررسی رفتار استحکام فشاری و مقاومت به سایش کاشی کف در دماهای تف جوشی مختلف، فصلنامه علمی - پژوهشی مواد نوین،10(37)، 74-63.

 قاسمی کهریزسنگی، سلمان، نعمتی، علی، شهرکی، عزیز، فاروقی، محمد. (1396). بهبود مقاومت به هیدراتاسیون دیرگدازهای منیزیت-دولومایتی (MgO-CaO) با استفاده از نانو ذرات اکسید زیرکونیم، فصلنامه علمی - پژوهشی مواد نوین، 7(28)، 135-148.