[1] D. Beagle, B. Moran, M. Mcdufford, and M. Merine, “Heavy-Duty Gas Turbine Operating and Maintenance Considerations,” GE Power Atlanta, GA, 2021.
[2] V. Navrotsky, “Gas turbine performance and maintenance continuous improvement,” in VGB Conference, Gas Turbines and Operation of Gas Turbines , Jun. 2013.
[3] H. L. Bernstein and others, “Materials Issues For Users Of Gas Turbines.,” in Proceedings of the 35th Turbomachinery Symposium, 2006.
[4] “ger-4171-perf-reliability-improvements-ms5002-gas-turbines.pdf.”
[5] S. Can Gülen, Gas Turbines for Electric Power Generation. Cambridge University Press, 2019.
[6] M.A. Cocca and Marcucci, “Performance and reliability improvements for MS5002 gas turbines,” 2003. Accessed: Dec. 01, 2022. [Online]. Available: https://www.ge.com/content/dam/gepower-new/global/en_US/downloads/gas-new-site/resources/reference/ger-4171-perf-reliability-improvements-ms5002-gas-turbines.pdf
[7] J. Li and A. Dasgupta, “Failure-mechanism models for creep and creep rupture,” IEEE Trans Reliab, vol. 42, no. 3, pp. 339–353, 1993.
[8] S. Baik and R. Raj, “Mechanisms of creep-fatigue interaction,” Metallurgical Transactions A, vol. 13, no. 7, pp. 1215–1221, 1982.
[9] G. Lvov, V. I. Levit, and M. J. Kaufman, “Mechanism of Primary MC Carbide Decomposition in Ni-Base Superalloys,” Metallurgical and materials transactions A, vol. 35A, pp. 1669–1679, Jun. 2004.
[10] R. Viswanathan, Damage Mechanisms and Life Assessment of High Temperature Components. 1989.
[11] H. Zhang et al., “Tensile properties, strain rate sensitivity and failure mechanism of single crystal superalloys CMSX-4,” Materials Science and Engineering A, vol. 782, 2020, doi: 10.1016/j.msea.2020.139105.
[12] M. Mehdizadeh and H. Farhangi, “Microstructural characterization and mechanical properties of IN617 after long-term operation Microstructural characterization and mechanical properties of IN617 after long-term operation Extended Abstract,” Journal of New Materials Summer 2021, vol. 12, no. 44, pp. 83–102, 2021, doi: 10.30495/jnm.2021.29188.1940.
[13] M. Mirzaee, A. Reza Khodabandeh, H. Reza Najafi, and G. Ebrahimi, “Investigation of gamma precipitation process under effect of strain in Nimonic80A nickel base superalloy,” Journal of New Materials Spring 2021, vol. 11, p. 43, 2021, doi: 10.30495/JNM.2021.4677.
[14] J. Liburdi, P. Lowden, D. Nagy, T. R. De Priamus, and S. Shaw, “Practical experience with the development of superalloy rejuvenation,” in Proceedings of the ASME Turbo Expo, 2009, vol. 4. doi: 10.1115/GT2009-59444.
[15] J. A. Daleo and J. R. Wilson, “GTD111 alloy material study,” in International Gas Turbine and Aeroengine Congress & Exhibition Birmingham, UK, 1996. [Online]. Available: http://asmedigitalcollection.asme.org/GT/proceedings-pdf/GT1996/78767/V005T12A017/4464976/v005t12a017-96-gt-520.pdf
[16] J. A. Daleo and D. H. Boone, “FAILURE MECHANISMS OF COATING SYSTEMS APPLIED TO ADVANCED TURBINE COMPONENTS,” in ASME 1997 International Gas Turbine and Aeroengine Congress, 1997. [Online]. Available: http://asmedigitalcollection.asme.org/GT/proceedings-pdf/GT1997/78712/V004T12A024/4218527/v004t12a024-97-gt-486.pdf
[17] J. A. Daleo, K. A. Ellison, and D. H. Boone, “Metallurgical considerations for life assessment and the safe refurbishment and re-qualification of gas turbine blades,” Proceedings of the ASME Turbo Expo, vol. 4, 2000, doi: 10.1115/2000-GT-0062.
[18] J. A. Daleo and J. R. Wilson, “GTD111 alloy material study,” J Eng Gas Turbine Power, vol. 120, no. 2, pp. 375–382, 1998, doi: 10.1115/96-GT-520.
[19] A. Dadkhah and A. Kermanpur, “On the precipitation hardening of the directionally solidified GTD-111 Ni-base superalloy: Microstructures and mechanical properties,” Materials Science and Engineering A, vol. 685, pp. 79–86, Feb. 2017, doi: 10.1016/j.msea.2017.01.005.
[20] B. G. Choi, I. S. Kim, D. H. Kim, and C. Y. Jo, “Temperature dependence of MC decomposition behavior in Ni-base superalloy GTD 111,” Materials Science and Engineering A, vol. 478, no. 1–2, pp. 329–335, Apr. 2008, doi: 10.1016/j.msea.2007.06.010.
[21] V. S. K. G. Kelekanjeri, S. K. Sondhi, T. Vishwanath, F. Mastromatteo, and B. Dasan, “Coarsening kinetics of the bimodal γ′ distribution in DS GTD111TM superalloy,” in WIT Transactions on Engineering Sciences, 2011, vol. 72, pp. 251–262. doi: 10.2495/MC110221.
[22] P. Zhao et al., “Interplay of chemistry and deformation-induced defects on facilitating topologically-close-packed phase precipitation in nickel-base superalloys,” Acta Mater, vol. 236, 2022, doi: 10.1016/j.actamat.2022.118109.
[23] P. Wangyao, N. Chuankrerkkul, S. Polsilapa, P. Sopon, and W. Homkrajai, “Gamma prime phase stability after long-term thermal exposure in cast nickel based superalloy, IN-738,” Chiang Mai Journal of Science, vol. 36, no. 3, 2009.
[24] B. Gyu Choi, I. Soo Kim, D. Hyun Kim, S. Moon Seo, and C. Yong Jo, “ETA Phase Formation During Thermal Exposure and Its Effect on Mechanical Properties in Ni-Base Superalloy GTD 111,” in Superalloys, 2004.
[25] N. S. C. J. M. K. W. M. R. V. P. Swaminathan, “Microstructure and Property Assessment of Conventionally Cast and Directionally Solidified Buckets Refurbished After Long-Term Service”.
[26] N. S. Cheruvu and V. P. Swaminathan, “Recovery of Microstructure and Mechanical properties of service run GTD-111 DS BUCKETS.” [Online]. Available: http://www.asme.org/about-asme/terms-of-use
[27] G. Marahleh, A. R. I. Kheder, and H. F. Hamad, “Creep life prediction of service-exposed turbine blades,” Materials Science and Engineering A, vol. 433, no. 1–2, pp. 305–309, Oct. 2006, doi: 10.1016/j.msea.2006.06.066.
[28] B. Liu, D. Raabe, F. Roters, and A. Arsenlis, “Interfacial dislocation motion and interactions in single-crystal superalloys,” Acta Mater, vol. 79, pp. 216–233, Aug. 2014, doi: 10.1016/j.actamat.2014.06.048.
[29] S. Sulzer et al., “On the assessment of creep damage evolution in nickel-based superalloys through correlative HR-EBSD and cECCI studies,” Acta Mater, vol. 185, pp. 13–27, Feb. 2020, doi: 10.1016/j.actamat.2019.07.018.
[30] Z. Shi, X. Wang, S. Liu, and J. Li, “Low cycle fatigue properties and microstructure evolution at 760°C of a single crystal superalloy,” Progress in Natural Science: Materials International, vol. 25, no. 1, pp. 78–83, 2015, doi: 10.1016/j.pnsc.2015.01.009.
[31] S. M. Hafez Haghighat, G. Eggeler, and D. Raabe, “Effect of climb on dislocation mechanisms and creep rates in γ′-strengthened Ni base superalloy single crystals: A discrete dislocation dynamics study,” Acta Mater, vol. 61, no. 10, pp. 3709–3723, Jun. 2013, doi: 10.1016/j.actamat.2013.03.003.